Evaluation of Herbicide Programs for Use in a 2,4-D–Resistant Soybean Technology for Control of Glyphosate-Resistant Palmer Amaranth (Amaranthus palmeri)

2016 ◽  
Vol 30 (2) ◽  
pp. 366-376 ◽  
Author(s):  
M. Ryan Miller ◽  
Jason K. Norsworthy

Two separate field experiments were conducted over a 2-yr period in Fayetteville, AR, during 2012 and 2013 to (1) evaluate POST herbicide programs utilizing a premixture of dimethylamine (DMA) salt of glyphosate + choline salt of 2,4-D in a soybean line resistant to 2,4-D, glyphosate, and glufosinate and (2) determine efficacy of herbicide programs that begin with PRE residual herbicides followed by POST applications of 2,4-D choline + glyphosate DMA on glyphosate-resistant Palmer amaranth. In the first experiment, POST applications alone that incorporated the use of residual herbicides with the glyphosate + 2,4-D premixture provided 93 to 99% control of Palmer amaranth at the end of the season. In the second experiment, the use of flumioxazin, flumioxazin + chlorimuron methyl, S-metolachlor + fomesafen, or sulfentrazone + chloransulam applied PRE provided 94 to 98% early-season Palmer amaranth control. Early-season control helped maintain a high level of Palmer amaranth control throughout the growing season, in turn resulting in fewer reproductive Palmer amaranth plants present at soybean harvest compared to most other treatments. Although no differences in soybean yield were observed among treated plots, it was evident that herbicide programs should begin with PRE residual herbicides followed by POST applications of glyphosate + 2,4-D mixed with residual herbicides to minimize late-season escapes and reduce the likelihood of contributions to the soil seedbank. Dependent upon management decisions, the best stewardship of this technology will likely rely on the use multiple effective mechanisms of action incorporated into a fully integrated weed management system.

2020 ◽  
pp. 1-8
Author(s):  
Chandrima Shyam ◽  
Parminder S. Chahal ◽  
Amit J. Jhala ◽  
Mithila Jugulam

Abstract Glyphosate-resistant (GR) Palmer amaranth is a problematic, annual broadleaf weed in soybean production fields in Nebraska and many other states in the United States. Soybean resistant to 2,4-D, glyphosate, and glufosinate (Enlist E3TM) has been developed and was first grown commercially in 2019. The objectives of this research were to evaluate the effect of herbicide programs applied PRE, PRE followed by (fb) late-POST (LPOST), and early-POST (EPOST) fb LPOST on GR Palmer amaranth control, density, and biomass reduction, soybean injury, and yield. Field experiments were conducted near Carleton, NE, in 2018, and 2019 in a grower’s field infested with GR Palmer amaranth in 2,4-D–, glyphosate-, and glufosinate-resistant soybean. Sulfentrazone + cloransulam-methyl, imazethapyr + saflufenacil + pyroxasulfone, and chlorimuron ethyl + flumioxazin + metribuzin applied PRE provided 84% to 97% control of GR Palmer amaranth compared with the nontreated control 14 d after PRE. Averaged across herbicide programs, PRE fb 2,4-D and/or glufosinate, and sequential application of 2,4-D or glufosinate applied EPOST fb LPOST resulted in 92% and 88% control of GR Palmer amaranth, respectively, compared with 62% control with PRE-only programs 14 d after LPOST. Reductions in Palmer amaranth biomass followed the same trend; however, Palmer amaranth density was reduced 98% in EPOST fb LPOST programs compared with 91% reduction in PRE fb LPOST and 76% reduction in PRE-only programs. PRE fb LPOST and EPOST fb LPOST programs resulted in an average soybean yield of 4,478 and 4,706 kg ha−1, respectively, compared with 3,043 kg ha−1 in PRE-only programs. Herbicide programs evaluated in this study resulted in no soybean injury. The results of this research illustrate that herbicide programs are available for the management of GR Palmer amaranth in 2,4-D–, glyphosate-, and glufosinate-resistant soybean.


2015 ◽  
Vol 29 (3) ◽  
pp. 405-411 ◽  
Author(s):  
Whitney D. Crow ◽  
Lawrence E. Steckel ◽  
Robert M. Hayes ◽  
Thomas C. Mueller

Recent increases in the prevalence of glyphosate-resistant (GR) Palmer amaranth mandate that new control strategies be developed to optimize weed control and crop performance. A field study was conducted in 2012 and 2013 in Jackson, TN, and in 2013 in Knoxville, TN, to evaluate POST weed management programs applied after harvest (POST-harvest) for prevention of seed production from GR Palmer amaranth and to evaluate herbicide carryover to winter wheat. Treatments were applied POST-harvest to corn stubble, with three applications followed by a PRE herbicide applied at wheat planting. Paraquat alone or mixed withS-metolachlor controlled 91% of existing Palmer amaranth 14 d after treatment but did not control regrowth. Paraquat tank-mixed with a residual herbicide of metribuzin, pyroxasulfone, saflufenacil, flumioxazin, pyroxasulfone plus flumioxazin, or pyroxasulfone plus fluthiacet improved control of regrowth or new emergence compared with paraquat alone. All residual herbicide treatments provided similar GR Palmer amaranth control. Through implementation of POST-harvest herbicide applications, the addition of 1,200 seed m−2or approximately 12 million seed ha−1to the soil seedbank was prevented. Overall, the addition of a residual herbicide provided only 4 to 7% more GR Palmer amaranth control than paraquat alone. Wheat injury was evident (< 10%) in 2012 from the PRE applications, but not in 2013. Wheat grain yield was not adversely affected by any herbicide application.


2020 ◽  
Vol 116 (1) ◽  
pp. 137
Author(s):  
Oludamilola ADEMABAYOJE ◽  
Joseph ADIGUN ◽  
Olusegun ADEYEMI ◽  
Olumide DARAMOLA ◽  
Godwin AJIBOYE

<p>Weed management is an important and expensive step in groundnut production. Field experiments were conducted in the early and late wet seasons of 2017 to evaluate the effectiveness and profitability of weed management using hoe weeding, herbicides or their combination in groundnut production. Butachlor and propaben at 2.0 kg a.i (active ingredient) ha<sup>-1 </sup>each followed by (fb) supplementary hoe-weeding (shw) at 6 weeks after sowing (WAS) significantly reduced weed cover and biomass with subsequent increase in groundnut pod yield similar to hoe-weeding treatments and better than either herbicide applied alone. The highest groundnut pod yield (1485.7 kg ha<sup>-1</sup>) and revenue ($1639.2) in the early season was obtained with three hoe weeding passes. However, in the late season, the highest groundnut pod yield (1146.3 kg ha<sup>-1</sup>) was obtained with propaben plus hoe-weeding and the highest revenue ($1264.8) obtained with butachlor plus hoe-weeding. Although three hoe-weedings gave the highest revenue in the early season, the gross margin and cost-benefit ratio obtained with hoe weeding treatments was lower than those of herbicides fb shw. This study showed that integrated weed management with butachlor or propaben and fb shw will improve weed control, productivity and profitability of groundnut production. Multiple hoe weeding, however, did not guarantee the highest profit but rather increased the cost of production.</p>


2012 ◽  
Vol 26 (3) ◽  
pp. 490-498 ◽  
Author(s):  
Andrew J. Price ◽  
Kip S. Balkcom ◽  
Leah M. Duzy ◽  
Jessica A. Kelton

Conservation agriculture (CA) practices are threatened by glyphosate-resistant Palmer amaranth. Integrated control practices including PRE herbicides and high-residue CA systems can decreaseAmaranthusemergence. Field experiments were conducted from autumn 2006 through crop harvest in 2009 at two sites in Alabama to evaluate the effect of integrated weed management practices onAmaranthuspopulation density and biomass, cotton yield, and economics in glyphosate-resistant cotton. Horizontal strips included four CA systems with three cereal rye cover crop seeding dates and a winter fallow (WF) CA system compared to a conventional tillage (CT) system. Additionally, vertical strips of four herbicide regimes consisted of: broadcast, banded, or no PRE applications ofS-metolachlor (1.12 kg ai ha−1) followed by (fb) glyphosate (1.12 kg ae ha−1) applied POST fb layby applications of diuron (1.12 kg ai ha−1) plus MSMA (2.24 kg ai ha−1) or the LAYBY application alone. Early-seasonAmaranthusdensity was reduced in high-residue CA in comparison to the CA WF systems in 2 of 3 yr.Amaranthusdensities in herbicide treatments that included a broadcast PRE application were lower at three of five sampling dates compared to banding early-season PRE applications; however, the differences were not significant during the late season and cotton yields were not affected by PRE placement. High-residue conservation tillage yields were 577 to 899 kg ha−1more than CT, except at one site in 1 yr when CT treatment yields were higher. CA utilizing high-residue cover crops increased net returns over CT by $100 ha−1or more 2 out of 3 yr at both locations. High-residue cover crop integration into a CA system reducedAmaranthusdensity and increased yield over WF systems; the inclusion of a broadcast PRE application can increase early-seasonAmaranthuscontrol and might provide additional control when glyphosate-resistantAmaranthuspopulations are present.


2020 ◽  
pp. 1-8
Author(s):  
Vipan Kumar ◽  
Rui Liu ◽  
Dallas E. Peterson ◽  
Phillip W. Stahlman

Abstract Field experiments were conducted in 2018 and 2019 at Kansas State University Ashland Bottoms (KSU-AB) research farm near Manhattan, KS, and Kansas State University Agricultural Research Center (KSU-ARC) near Hays, KS, to determine the effectiveness of various PRE-applied herbicide premixes and tank mixtures alone or followed by (fb) an early POST (EPOST) treatment of glyphosate + dicamba for controlling glyphosate-resistant (GR) Palmer amaranth in glyphosate/dicamba-resistant (GDR) soybean. In experiment 1, PRE-applied sulfentrazone + S-metolachlor, saflufenacil + imazethapyr + pyroxasulfone, chlorimuron + flumioxazin + pyroxasulfone, and metribuzin + flumioxazin + imazethapyr provided 85% to 94% end-of-season control of GR Palmer amaranth across both sites. In comparison, Palmer amaranth control ranged from 63% to 87% at final evaluation with PRE-applied pyroxasulfone + sulfentrazone, pyroxasulfone + sulfentrazone plus metribuzin, pyroxasulfone + sulfentrazone plus carfentrazone + sulfentrazone, and sulfentrazone + metribuzin at the KSU-ARC site in experiment 2. All PRE fb EPOST (i.e., two-pass) programs provided near-complete (98% to 100%) control of GR Palmer amaranth at both sites. PRE-alone programs reduced Palmer amaranth shoot biomass by 35% to 76% in experiment 1 at both sites, whereas all two-pass programs prevented Palmer amaranth biomass production. No differences in soybean yields were observed among tested programs in experiment 1 at KSU-ARC site; however, PRE-alone sulfentrazone + S-metolachlor, saflufenacil + imazethapyr + pyroxasulfone, and chlorimuron + flumioxazin + pyroxasulfone had lower grain yield (average, 4,342 kg ha−1) compared with the top yielding (4,832 kg ha−1) treatment at the KSU-AB site. PRE-applied sulfentrazone + metribuzin had a lower soybean yield (1,776 kg ha−1) compared with all other programs in experiment 2 at the KSU-ARC site. These results suggest growers should proactively adopt effective PRE-applied premixes fb EPOST programs evaluated in this study to reduce selection pressure from multiple POST dicamba applications for GR Palmer amaranth control in GDR soybean.


2017 ◽  
Vol 31 (4) ◽  
pp. 617-622 ◽  
Author(s):  
Lauren M. Schwartz-Lazaro ◽  
Jeremy K. Green ◽  
Jason K. Norsworthy

Harvest weed seed control is an alternative non-chemical approach to weed management that targets escaped weed seeds at the time of crop harvest. Relatively little is known on how these methods will work on species in the US. Two of the most prominent weeds in soybean production in the midsouthern US are Palmer amaranth and barnyardgrass. Typically, when crop harvesting occurs the weed seed has already either shattered or is taken into the combine and may be redistributed in the soil seedbank. This causes further weed seed spread and may contribute to the addition of resistant seeds in the seedbank. There is little research on how much seed is retained on different weed species at or beyond harvest time. Thus, the objective of this study was to determine the percentage of total Palmer amaranth and barnyardgrass seed production that was retained on the plant during delayed soybean harvest. Retained seed over time was similar between 2015 and 2016, but was significantly different between years for only Palmer amaranth. Seed retention did not differ between years for either weed species. Palmer amaranth and barnyardgrass retained 98 and 41% of their seed at soybean maturity and 95 and 32% of their seed one month after soybean maturity, respectively. Thus, this research indicates that if there are escaped Palmer amaranth plants and soybean is harvested in a timely manner, most seed will enter the combine and offer potential for capture or destruction of these seeds using harvest weed seed control tactics. While there would be some benefit to using HWSC for barnyardgrass, the utility of this practice on mitigating herbicide resistance would be less pronounced than that of Palmer amaranth because of the reduced seed retention or early seed shatter.


Weed Science ◽  
2009 ◽  
Vol 57 (6) ◽  
pp. 644-651 ◽  
Author(s):  
Prashant Jha ◽  
Jason K. Norsworthy

Field experiments were conducted in 2004, 2005, and 2006, at Pendleton, SC, to determine the effects of soybean canopy and tillage on Palmer amaranth emergence from sites with a uniform population of Palmer amaranth. In 2006, the effect of soybean canopy was evaluated only in no-tillage plots. Palmer amaranth emerged from May 10 through October 23, May 13 through September 2, and April 28 through August 25 in 2004, 2005, and 2006, respectively. Two to three consistent emergence periods occurred from early May through mid-July. Shallow (10-cm depth) spring tillage had minimal influence on the cumulative emergence of Palmer amaranth. Increase in light interception following soybean canopy formation was evident by early July, resulting in reduced Palmer amaranth emergence, especially in no-tillage conditions. In no-tillage plots, from 32 or 33 d after soybean emergence through senescence, Palmer amaranth emergence was reduced by 73 to 76% in plots with soybean compared with plots without soybean. Emergence of Palmer amaranth was favored by high-thermal soil amplitudes (10 to 16 C) in the absence of soybean. Of the total emergence during a season, > 90% occurred before soybean canopy closure. The seedling recruitment pattern of Palmer amaranth from this research suggests that, although Palmer amaranth exhibits an extended emergence period, cohorts during the peak emergence periods from early May to mid-July need greater attention in weed management.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Leah M. Duzy ◽  
Andrew J. Price ◽  
Kipling S. Balkcom ◽  
Jatinder S. Aulakh

Cotton (Gossypium hirsutumL.) producers in Alabama are faced with a rapidly expanding problem that decreases yields and increases production costs: herbicide-resistant weeds. Producers increasingly rely on integrated weed management strategies that raise production costs. This analysis evaluated how tillage, cover crops, and herbicide regime affected net returns above variable treatment costs (net returns) for cotton production in Alabama from 2009 to 2011 under pressure from Palmer amaranth (Amaranthus palmeriS. Wats.). Annual net returns were compared for two tillage treatments (inversion and noninversion tillage), three cover crops (crimson clover [Trifolium incarnatumL.], cereal rye [Secale cerealL.], and winter fallow), and three herbicide regimes (PRE, POST, and PRE+POST). Results indicate that under heavy Palmer amaranth population densities one year of inversion tillage followed by two years of noninversion tillage, along with a POST or PRE+POST herbicide application had the highest net returns in the first year; however, the economic benefit of inversion tillage, across all herbicide treatments, was nonexistent in 2010 and 2011. Cotton producers with Palmer amaranth infestations would likely benefit from cultural controls, in conjunction with herbicide applications, as part of their weed management system to increase net returns.


2020 ◽  
pp. 1-28
Author(s):  
Parminder S. Chahal ◽  
Ethann R. Barnes ◽  
Amit J. Jhala

Abstract The evolution of multiple herbicide-resistant weeds, including Palmer amaranth, has necessitated the implementation of an integrated weed management (IWM) program. Understanding weed emergence patterns is critical for developing effective IWM strategies. The objective of this study was to evaluate effect of tillage timings and residual herbicides on cumulative emergence and emergence pattern of Palmer amaranth. Field experiments were conducted in 2015 and 2016 in a field naturally infested with photosystem (PS) II and 4- hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor-resistant Palmer amaranth near Shickley, Nebraska in a bare ground study, with no crop planted in the plots but residues from the preceding corn crop were present on the soil surface. Treatments consisted of shallow tillage timings (early, mid, and late), three premix corn or soybean residual herbicides, and a nontreated control. The Weibull function was fitted to cumulative Palmer amaranth emergence with day of year (DOY) and thermal time (TT) as independent variables. Year by treatment interaction was significant for time to 10%, 25%, 50%, 75%, and 90% Palmer amaranth emergence and cumulative emergence. Majority of Palmer amaranth seedlings emerged early, following early-tillage with 90% cumulative emergence occurring on DOY 172 compared with DOY 210 to 212 for mid- and late-tillage and DOY 194 in nontreated control in 2015. In 2016, 90% of cumulative emergence following early-, mid-, and late-tillage (DOY 201 to 211) were similar, and nontreated control (DOY 188) was similar to early-tillage. Nontreated control and PRE herbicide treatments had similar DOY values for 90% emergence in both years. Number of emerged Palmer amaranth seedlings over the season was higher with shallow tillage than no tillage or with PRE herbicides.


2021 ◽  
pp. 1-9
Author(s):  
Clint W. Beiermann ◽  
Cody F. Creech ◽  
Stevan Z. Knezevic ◽  
Amit J. Jhala ◽  
Robert Harveson ◽  
...  

Abstract A prepackaged mixture of desmedipham + phenmedipham was previously labeled for control of Amaranthus spp. in sugarbeet. Currently, there are no effective POST herbicide options to control glyphosate-resistant Palmer amaranth in sugarbeet. Sugarbeet growers are interested in using desmedipham + phenmedipham to control escaped Palmer amaranth. In 2019, a greenhouse experiment was initiated near Scottsbluff, NE, to determine the selectivity of desmedipham and phenmedipham between Palmer amaranth and sugarbeet. Three populations of Palmer amaranth and four sugarbeet hybrids were evaluated. Herbicide treatments consisted of desmedipham and phenmedipham applied singly or as mixtures at an equivalent rate. Herbicides were applied when Palmer amaranth and sugarbeet were at the cotyledon stage, or two true-leaf sugarbeet stage and when Palmer amaranth was 7 cm tall. The selectivity indices for desmedipham, phenmedipham, and desmedipham + phenmedipham were 1.61, 2.47, and 3.05, respectively, at the cotyledon stage. At the two true-leaf application stage, the highest rates of desmedipham and phenmedipham were associated with low mortality rates in sugarbeet, resulting in a failed response of death. The highest rates of desmedipham + phenmedipham caused a death response of sugarbeet; the selectivity index was 2.15. Desmedipham treatments resulted in lower LD50 estimates for Palmer amaranth compared to phenmedipham, indicating that desmedipham can provide greater levels of control for Palmer amaranth. However, desmedipham also caused greater injury in sugarbeet, producing lower LD50 estimates compared to phenmedipham. Desmedipham + phenmedipham provided 90% or greater control of cotyledon-size Palmer amaranth at a labeled rate but also caused high levels of sugarbeet injury. Neither desmedipham, phenmedipham, nor desmedipham + phenmedipham was able to control 7-cm tall Palmer amaranth at previously labeled rates. Results indicate that desmedipham + phenmedipham can only control Palmer amaranth if applied at the cotyledon stage and a high level of sugarbeet injury is acceptable.


Sign in / Sign up

Export Citation Format

Share Document