Risk-Efficiency Criteria for Evaluating Economics of Herbicide-Based Weed Management Systems in Corn

2004 ◽  
Vol 18 (3) ◽  
pp. 687-697 ◽  
Author(s):  
Thomas R. Hoverstad ◽  
Jeffrey L. Gunsolus ◽  
Gregg A. Johnson ◽  
Robert P. King

Evaluation of economic outcome associated with a given weed management system is an important component in the decision-making process within crop production systems. The objective of this research was to investigate how risk-efficiency criteria could be used to improve herbicide-based weed management decision making, assuming different risk preferences among growers. Data were obtained from existing weed management trials in corn conducted at the University of Minnesota Southern Research and Outreach Center at Waseca. Weed control treatments represented a range of practices including one-pass soil-applied, one-pass postemergence, and sequential combinations of soil and postemergence herbicide application systems. Analysis of risk efficiency across 23 herbicide-based weed control treatments was determined with the mean variance and stochastic dominance techniques. We show how these techniques can result in different outcomes for the decision maker, depending on risk attitudes. For example, mean variance and stochastic dominance techniques are used to evaluate risk associated with one- vs. two-pass herbicide treatments with and without cultivation. Based on these analyses, it appears that a one-pass system is preferred by a risk-averse grower. However, we argue that this may not be the best option considering potential changes in weed emergence patterns, application timing concerns, etc. The techniques for economic analysis of weed control data outlined in this article will help growers match herbicide-based weed management systems to their own production philosophies based on economic risk.

Weed Science ◽  
2016 ◽  
Vol 64 (4) ◽  
pp. 743-756 ◽  
Author(s):  
Antonio DiTommaso ◽  
Kristine M. Averill ◽  
Michael P. Hoffmann ◽  
Jeffrey R. Fuchsberg ◽  
John E. Losey

Managing agricultural pests with an incomplete understanding of the impacts that tactics have on crops, pests, and other organisms poses risks for loss of short-term profits and longer-term negative impacts, such as evolved resistance and nontarget effects. This is especially relevant for the management of weeds that are viewed almost exclusively as major impediments to crop production. Seldom considered in weed management are the benefits weeds provide in agroecosystems, which should be considered for optimal decision-making. Integration of weed costs and benefits will become increasingly important as management for pests transitions away from nearly complete reliance on herbicides and transgenic crop traits as the predominant approach for control. Here, we introduce a weed-management decision framework that accounts for weed benefits and exemplify how in-crop weed occurrence can increase crop yields in which a highly damaging insect also occurs. We highlight a case study showing how management decision-making for common milkweed, which is currently controlled primarily with glyphosate in herbicide-tolerant corn, can be improved by integrating management of the European corn borer (ECB), which is currently controlled primarily by the transgenic toxin Cry1 inBacillus thuringiensiscorn. Our data reveal that milkweed plants harboring aphids provide a food source (honeydew) for parasitoid wasps, which attack ECB eggs. Especially at high ECB population densities (> 1 egg mass leaf–1), maintaining low milkweed densities (< 1 stem m–2), effectively helps to minimize yield losses from ECB and to increase the economic injury level of this aggressive perennial weed. In addition, milkweed is the host for the monarch butterfly, so breeding-ground occurrences of the plant, including crop fields, may help sustain populations of this iconic insect. Using a more-holistic approach to integrate the management of multiple crop pests has the capacity to improve decision-making at the field scale, which can improve outcomes at the landscape scale.


Weed Science ◽  
1997 ◽  
Vol 45 (3) ◽  
pp. 329-336 ◽  
Author(s):  
Douglas D. Buhler ◽  
Robert G. Hartzler ◽  
Frank Forcella

The species composition and density of weed seed in the soil vary greatly and are closely linked to the cropping history of the land. Altering tillage practices changes weed seed depth in the soil, which plays a role in weed species shifts and affects efficacy of control practices. Crop rotation and weed control practices also affect the weed seedbank. Information on the influence of cropping practices on the weed seedbank should be a useful tool for integrated weed management. Decision aid models use information on the weed seedbank to estimate weed populations, crop yield loss, and recommend weed control tactics. Understanding the light requirements of weed seed may provide new approaches to weed management. Improving and applying our understanding of weed seedbank dynamics is essential to developing improved weed management systems. The principles of plant ecology must be integrated with the science of weed management to develop strategies that take advantage of basic plant responses in weed management systems for agronomic crops.


2009 ◽  
Vol 132 (3-4) ◽  
pp. 237-242 ◽  
Author(s):  
R. Chikowo ◽  
V. Faloya ◽  
S. Petit ◽  
N.M. Munier-Jolain

Weed Science ◽  
2016 ◽  
Vol 64 (3) ◽  
pp. 531-539 ◽  
Author(s):  
Zubeyde Filiz Arslan ◽  
Martin M. Williams ◽  
Roger Becker ◽  
Vincent A. Fritz ◽  
R. Ed Peachey ◽  
...  

Atrazine has been the most widely used herbicide in North American processing sweet corn for decades; however, increased restrictions in recent years have reduced or eliminated atrazine use in certain production areas. The objective of this study was to identify the best stakeholder-derived weed management alternatives to atrazine in processing sweet corn. In field trials throughout the major production areas of processing sweet corn, including three states over 4 yr, 12 atrazine-free weed management treatments were compared to three standard atrazine-containing treatments and a weed-free check. Treatments varied with respect to herbicide mode of action, herbicide application timing, and interrow cultivation. All treatments included a PRE application of dimethenamid. No single weed species occurred across all sites; however, weeds observed in two or more sites included common lambsquarters, giant ragweed, morningglory species, velvetleaf, and wild-proso millet. Standard treatments containing both atrazine and mesotrione POST provided the most efficacious weed control among treatments and resulted in crop yields comparable to the weed-free check, thus demonstrating the value of atrazine in sweet corn production systems. Timely interrow cultivation in atrazine-free treatments did not consistently improve weed control. Only two atrazine-free treatments consistently resulted in weed control and crop yield comparable to standard treatments with atrazine POST: treatments with tembotrione POST either with or without interrow cultivation. Additional atrazine-free treatments with topramezone applied POST worked well in Oregon where small-seeded weed species were prevalent. This work demonstrates that certain atrazine-free weed management systems, based on input from the sweet corn growers and processors who would adopt this technology, are comparable in performance to standard atrazine-containing weed management systems.


Author(s):  
Mahmoud Abdelrahman ◽  
Firas Masri ◽  
Dimitra Skoumpopoulou

With the advent of the knowledge economy and the growing importance of knowledge societies, organizations are constantly seeking new ways of leveraging and sharing knowledge to support decision-making (DM) processes. This chapter presents an initial insight to the little-researched phenomenon of how knowledge management systems (KMSs) can facilitate knowledge sharing (KS) to support DM processes in organizations. In this chapter, authors aim to extend the existing literature of knowledge management, decision making, and knowledge sharing by proposing a new conceptual framework, namely “ECUA” (easiness, communication, unification, and analytics characteristics). In this study, 42 semi-structured interviews have been conducted. The proposed conceptual framework will benefit managers in both public and private sectors in finding new ways of leveraging and sharing knowledge to support DM processes via using KMSs. This framework can be used to explore KMSs characteristics that can support DM processes by facilitating knowledge sharing in organizations.


Weed Science ◽  
1998 ◽  
Vol 46 (6) ◽  
pp. 698-702 ◽  
Author(s):  
W. Carroll Johnson ◽  
Benjamin G. Mullinix

Field studies were conducted from 1995 to 1997 near Tifton, GA, to determine the benefits of stale seedbed weed control in cucumber. Three stale seedbed management systems—(1) power till stale seedbeds twice (2 ×), (2) glyphosate application immediately after planting, and (3) combination system of stale seedbeds power tilled once 2 wk prior to planting followed by glyphosate application immediately after planting cucumber—were evaluated as main plots. Subplots were weed management systems after planting cucumber: intensive, basic, and cultivation alone. Weed densities were generally greater in 1996 and 1997 than in 1995. Yellow nutsedge was the overall predominant species in 1995 (46 plants m−2), with Florida pusley being the predominant species in 1996 and 1997, at 80 and 124 plants m−2, respectively. Generally, stale seedbeds shallow tilled 2 × had fewer weeds and greater cucumber yields than stale seedbeds treated with glyphosate. Glyphosate did not adequately control emerged Florida pusley on stale seedbeds, resulting in reduced cucumber yield. Clomazone preemergence and bentazon/halosulfuron postemergence were used for broadleaf weed control in the intensive weed management system. These herbicides injured cucumber plants, delayed maturity, and reduced yield. Based on our results, stale seedbeds shallow tilled 2 × can be integrated into cucumber production and provide effective cultural weed control. Furthermore, these systems will replace the need for potentially injurious herbicides.


2004 ◽  
Vol 18 (2) ◽  
pp. 268-276 ◽  
Author(s):  
Ian C. Burke ◽  
John W. Wilcut

An experiment was conducted at five locations in North Carolina during 2000 and 2001 to evaluate weed control, crop injury, and cotton yield. Weed management systems included different combinations of pyrithiobac preemergence (PRE), fluometuron PRE, CGA-362622 postemergence (POST), pyrithiobac POST, and monosodium salt of methylarsonic acid (MSMA) plus prometryn applied late POST-directed (LAYBY). At Goldsboro in 2000, cotton was injured 74 to 78% by CGA-362622 POST when evaluated 4 to 7 d after treatment (DAT). Injury at Clayton, Goldsboro, and Lewiston in 2001 and Rocky Mount in 2000 was less than 16% 4 to 7 DAT with the same treatment and was not apparent by 62 DAT. CGA-362622 controlled common lambsquarters, common ragweed, Palmer amaranth, sicklepod, smooth pigweed, andIpomoeaspecies including entireleaf, ivyleaf, and pitted morningglory, and the addition of pyrithiobac to the herbicide system, either PRE or POST, increased control ofAmaranthusspecies, jimsonweed, and prickly sida. CGA-362622 did not control jimsonweed or prickly sida. Fluometuron PRE, pyrithiobac PRE, and MSMA plus prometryn LAYBY were beneficial for increasing weed control and cotton lint yields. Prometryn plus MSMA LAYBY increased control of common ragweed, entireleaf morningglory, jimsonweed, pitted morningglory, and smooth pigweed and provided higher cotton yields than similar systems without a LAYBY. The greatest weed control and greatest cotton lint yields required complete weed management systems that included a combination of PRE, POST, and LAYBY treatments.


Weed Science ◽  
2003 ◽  
Vol 51 (6) ◽  
pp. 1002-1009 ◽  
Author(s):  
Dunk Porterfield ◽  
John W. Wilcut ◽  
Jerry W. Wells ◽  
Scott B. Clewis

Field studies conducted at three locations in North Carolina in 1998 and 1999 evaluated crop tolerance, weed control, and yield with CGA-362622 alone and in combination with various weed management systems in transgenic and nontransgenic cotton systems. The herbicide systems used bromoxynil, CGA-362622, glyphosate, and pyrithiobac applied alone early postemergence (EPOST) or mixtures of CGA-362622 plus bromoxynil, glyphosate, or pyrithiobac applied EPOST. Trifluralin preplant incorporated followed by (fb) fluometuron preemergence (PRE) alone or fb a late POST–directed (LAYBY) treatment of prometryn plus MSMA controlled all the weed species present less than 90%. Herbicide systems that included soil-applied and LAYBY herbicides plus glyphosate EPOST or mixtures of CGA-362622 EPOST plus bromoxynil, glyphosate, or pyrithiobac controlled broadleaf signalgrass, entireleaf morningglory, large crabgrass, Palmer amaranth, prickly sida, sicklepod, and smooth pigweed at least 90%. Only cotton treated with these herbicide systems yielded equivalent to the weed-free check for each cultivar. Bromoxynil systems did not control Palmer amaranth and sicklepod, pyrithiobac systems did not control sicklepod, and CGA-362622 systems did not control prickly sida.


2004 ◽  
Vol 18 (2) ◽  
pp. 315-324 ◽  
Author(s):  
Leanna L. Lyon ◽  
J. Wayne Keeling ◽  
Peter A. Dotray

Field experiments were conducted in 1999 and 2000 to evaluate and adapt the Herbicide Application Decision Support System (HADSS®) program for Texas Southern High Plains cotton production. Weed management systems (in glyphosate-resistant, bromoxynil-resistant, and nontransgenic cotton varieties) included trifluralin preplant incorporated (PPI) followed by (fb) HADSS postemergence-topical (POST) recommendations (PPI fb POST HADSS), HADSS recommendations alone (POST HADSS), and Texas Agricultural Experiment Station (TAES) recommendations for the Texas Southern High Plains. In both years, effective season-long weed control was achieved with all weed management systems in the glyphosate-resistant variety, but only the PPI fb POST HADSS and TAES weed management systems controlled Palmer amaranth and devil's-claw in the bromoxynil-resistant and nontransgenic varieties, compared with POST HADSS alone. No differences in cotton lint yield or net returns over weed control costs were observed with weed management systems across variety in 1999; however, in general, the glyphosate-resistant and nontransgenic varieties produced higher yields and net returns than the bromoxynil-resistant variety. In 2000, plots from the TAES weed management system produced higher lint yields than the plots of PPI fb POST HADSS recommendations in the glyphosate- and bromoxynil-resistant varieties, but plots of all management systems yielded similarly in the nontransgenic variety. In 2000, plots from the TAES system produced the highest net returns in the glyphosate- and bromoxynil-resistant varieties. In the nontransgenic variety, the PPI fb POST HADSS and TAES weed management systems produced higher net returns over weed control costs than the POST HADSS system.


Sign in / Sign up

Export Citation Format

Share Document