An Evaluation of Two Novel Cultivation Tools

2012 ◽  
Vol 26 (2) ◽  
pp. 316-325 ◽  
Author(s):  
Glenn J. Evans ◽  
Robin R. Bellinder ◽  
Russell R. Hahn

Cultivation is a critical component of organic weed management and has relevance in conventional farming. Limitations with current cultivation tools include high costs, limited efficacy, and marginal applicability across a range of crops, soil types, soil moisture conditions, and weed growth stages. The objectives of this research were to compare the weed control potential of two novel tools, a block cultivator and a stirrup cultivator, with that of a conventional S-tine cultivator, and to evaluate crop response when each tool was used in pepper and broccoli. Block and stirrup cultivators were mounted on a toolbar with an S-tine sweep. In 2008, the tripart cultivator was tested in 20 independently replicated noncrop field events. Weed survival and reemergence data were collected from the cultivated area of each of the three tools. Environmental data were also collected. A multivariable model was created to assess the importance of cultivator design and environmental and operational variables on postcultivation weed survival. Additional trials in 2009 evaluated the yield response of pepper and broccoli to interrow cultivations with each tool. Cultivator design significantly influenced postcultivation weed survival (P < 0.0001). When weed survival was viewed collectively across all 20 cultivations, both novel cultivators significantly increased control. Relative to the S-tine sweep, the stirrup cultivator reduced weed survival by about one-third and the block cultivator reduced weed survival by greater than two-thirds. Of the 11 individually assessed environmental and operational parameters, 7 had significant implications for weed control with the sweep; 5 impacted control with the stirrup cultivator, and only 1 (surface weed cover at the time of cultivation) influenced control with the block cultivator. Crop response to each cultivator was identical. The block cultivator, because of its increased effectiveness and operational flexibility, has the potential to improve interrow mechanical weed management.

2017 ◽  
Vol 38 (04) ◽  
Author(s):  
K. Sivagamy ◽  
C. Chinnusamy ◽  
P. Parasuraman

Weeds are generally hardy species having fast growth, deep root system and capable of competing very efficiently with cultivated crops for the available resources and adversely affect the crop growth and yield. Weed management systems that rely on post emergence control assume that crops can tolerate competition for certain periods of time without suffering yield losses. Initial slow growth particularly at early crop growth stages and wider plant spacing of maize crop encourages fast and vigorous growth of weeds. It is of paramount importance that, competition from weeds must be minimized to achieve optimum yield. Among the different weed control methods, chemical method bears many advantages in suppressing weed growth and to get healthy and vigorous crop stand. Non-selective herbicide molecules with a variety of mode of action were discovered, developed and marketed for successful weed control programme.


1999 ◽  
Vol 13 (1) ◽  
pp. 104-111 ◽  
Author(s):  
Lee R. Van Wychen ◽  
R. Gordon Harvey ◽  
Mark J. Vangessel ◽  
Thomas L. Rabaey ◽  
David J. Bach

Field studies were conducted at Arlington, WI, in 1996 and 1997 and at Georgetown, DE, and LeSueur, MN, in 1997 to determine weed control efficacy, crop injury, and yield response of PAT-transformed sweet corn to glufosinate-based weed management. Sequential applications of glufosinate 10 to 18 d apart at 0.4 and 0.3 kg ai/ha controlled common lambsquarters, common ragweed, velvetleaf, wild-proso millet, and fall panicum 90% or better at all locations. Weed control varied little among 0.3, 0.4, or 0.3 and 0.3 (sequential) kg/ha glufosinate rates. Glufosinate applied alone, with, or following atrazine controlled velvetleaf 90% or greater but was less consistent on common ragweed and common lambsquarters (73 to 100%). Atrazine plus metolachlor applied preemergence (PRE) and glufosinate applied alone postemergence (POST) provided inconsistent wild-proso millet and fall panicum control (43 to 99%). Metolachlor followed by glufosinate improved consistency of grass control (> 76%). Glufosinate followed by cultivation provided 80% or greater control of velvetleaf and wild-proso millet. Glufosinate did not injure or delay maturity of PAT-transformed sweet corn. Sweet corn treated with glufosinate resulted in yields greater than or equal to the sweet corn that was hand-weeded or received a standard herbicide treatment.


2017 ◽  
Vol 34 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Mauricio Erazo-Barradas ◽  
Claire N. Friedrichsen ◽  
Frank Forcella ◽  
Dan Humburg ◽  
Sharon A. Clay

AbstractWeed control is challenging to farmers who are transitioning from production systems that use synthetic herbicides to organic systems. A 2-year field study examined air-propelled corncob grit abrasion for in-row weed control efficacy and effect on corn yield. Grit was applied based on corn vegetative developmental stages with one (V1, V3 or V5), two (V1 + V3, V1 + V5, or V3 + V5), or three (V1 + V3 + V5) applications. Flame-weeding or cultivation was used after the V5 application for between-row weed control. Grit applications decreased in-row weed densities by about 60% (α = 0.05) and biomass up to 95% (α = 0.001). Between-row treatments provided similar control, and reduced weed biomass by 55% in 2013 (α = 0.01) and 86% (α = 0.001) in 2014. In-row grit treatments increased corn yield up to 44%, and yield was more influenced by in-row weeds than between row weeds. These results indicate that abrasive corncob grit for in-row weed control, supplemented with cultivation or flaming, can reduce weed biomass substantially and help maintain corn yield. However, timing and frequency of grit application need further refinement based on weed growth as influenced by climate, as treatments at similar corn growth stages did not consistently provide adequate weed control between years.


1996 ◽  
Vol 76 (4) ◽  
pp. 915-919 ◽  
Author(s):  
R. E. Blackshaw ◽  
G. Saindon

A field study was conducted during 3 yr to determine the growth and yield response of Pinto, Pink Red and Great Northern dry beans to various doses of imazethapyr. Imazethapyr was applied postemergence at 0, 25, 50 75 100, 150, and 200 g ha−1 to each class of dry bean. Results indicated that these four classes of dry beans responded similarly to imazethapyr. Dry bean injury increased and yields were reduced as dose of imazethapyr increased. At the proposed use dose of 50 g ha−1, imazethapyr reduced yield by 5 to 6%. Imazethapyr at 100 g ha−1 reduced dry bean yield by 10 to 12% and delayed maturity by 3 to 4 d. Benefits of superior weed control attained with imazethapyr should be weighed against potential crop injury when growers consider using imazethapyr in their dry bean weed management programs. Key words: Herbicide injury, maturity, seed yield, seed weight


1995 ◽  
Vol 9 (3) ◽  
pp. 531-534 ◽  
Author(s):  
Mark J. Vangessel ◽  
Lori J. Wiles ◽  
Edward E. Schweizer ◽  
Phil Westra

An integrated approach to weed management in pinto bean is needed since available herbicides seldom adequately control all weed species present in a field. A two-year study was conducted to assess weed control efficacy and pinto bean tolerance to mechanical weeding from a rotary hoe or flex-tine harrow at crook, unifoliolate, and trifoliolate stages of bean development. Weed control was similar for both implements and all timings in 1993. In 1994, mechanical weeding at trifoliolate and both crook and trifoliolate stages controlled more weeds than at other growth stages, regardless of type of implement. Using the flex-tine harrow reduced pinto bean stand, but results based on growth stage were not consistent each year. Damage to pinto bean hypocotyls and stems was observed with the flex-tine harrow used at both crook and trifoliolate stages in 1994. Rotary hoeing did not reduce pinto bean stand or cause injury. Yield and seed weight did not differ among treatments in either year.


Weed Science ◽  
2016 ◽  
Vol 64 (3) ◽  
pp. 513-522 ◽  
Author(s):  
Nicole E Tautges ◽  
Jessica R Goldberger ◽  
Ian C Burke

A lack of information regarding weed control, relative to conventional systems, has left organic growers largely on their own when devising weed management systems for organic crops. As interest in organic weed management increases, researchers need more information regarding the type and number of weed control practices undertaken on organic farms. A survey of certified organic growers was conducted in five states in the northwest United States to identify organic weed management programs and what grower and farm-operation characteristics were factors in weed management program design. Three types of weed management programs, with varying diversity in weed control practices, were identified. Stepwise binary logistic regression indicated that the likelihood of an organic grower using a more-diverse weed management program increased if the grower engaged in grain production and as the number of crops produced on an organic farm operation in 1 yr increased. The probability of operating a more-diverse weed management program also increased as a grower's education level increased. Organic hectarage operated was positively correlated with weed management program diversity, and with the adoption of cultural controls. Additionally, awareness of weeds as a factor causing yield loss was correlated with increased weed management program diversity. An increased awareness among researchers of the differing needs and abilities of organic growers in managing weeds on their farms will improve communication and outreach efforts when assisting growers with designing organic weed management programs.


2021 ◽  
Vol 13 (23) ◽  
pp. 13239
Author(s):  
Gurdeep Singh Malhi ◽  
M. C. Rana ◽  
Suresh Kumar ◽  
Muhammad Ishaq Asif Rehmani ◽  
Abeer Hashem ◽  
...  

Weed management in blackgram is one of the most efficient ways to improve its yield, as uncontrolled weed growth causes a significant decrease in crop yield. A field experiment was performed at Berthin, Himachal Pradesh, India, to investigate the efficacy, energy use efficiency (EUE), and carbon footprints of weed management tactics. Twelve weed control treatments were tested applied alone or in combination at pre and post emergence stages. The most prominent weeds were Cyperus iria, Dactyloctenium aegyptium, and Echinochloa colona, which caused a 68.1% loss in unweeded conditions. The application of weed control treatments reduced the weed count at 60 DAS from around 50% to 90%. The most efficient weed control treatment was pre-emergence (PRE) use of ready mix imazethapyr 35% + imazamox 35% WG @ 80 g ha−1, which resulted in a minimum weed infestation (i.e., weed count and weed biomass) and consequently highest yield. Its efficacy in weed control treatment was on par with PRE use of ready mix imazethapyr (35%) + imazamox (35% WG @ 70 g ha−1. Maximum energy use efficiency was also obtained upon PRE use of imazethapyr (35%) + imazamox (35% WG) @ 80 g ha−1 (8.27), trailed by PRE use of imazethapyr + imazamox @ 70 g ha−1 (7.84), mainly because of the higher yield obtained in these treatments which shows their efficiency in energy conversion. The carbon footprints were observed to be the lowest in ready mix combination of imazethapyr (35%) + imazamox (35% WG) applied at 80 g ha−1 (0.11 kg CE kg−1 yield), followed by imazethapyr (35%) + imazamox (35% WG) applied at 70 g ha−1 (0.12 kg CE kg−1 yield), as it resulted in the lowest emission per unit output production.


Weed Science ◽  
1996 ◽  
Vol 44 (3) ◽  
pp. 596-602 ◽  
Author(s):  
Reid J. Smeda ◽  
Stephen C. Weller

Weed control in tomato production systems is difficult because few are registered. The use of rye for weed control and its influence on transplant tomato yields was investigated during 1986 and 1987 at two locations in IN to determine if cover crops can provide an alternative weed management technique. ‘Wheeler’ rye was sown in the fall of 1985 and 1986, and mowed or desiccated with glyphosate at various times before planting ‘IND 812'tomatoes. At the time of glyphosate application, rye residues reduced the growth of overwintering weeds by 93% or more compared to bare ground (no cover crop) areas. The time of desiccating rye prior to planting tomatoes affected the extent of weed suppression by rye residues. In 1986, rye treated 4 wk before planting (WBP) tomatoes provided up to 89% suppression of weed growth at 2 wk after planting (WAP) tomatoes, but no measurable weed suppression 5 WAP tomatoes. Rye treated 2 WBP tomatoes provided up to 97% weed suppression up to 5 WAP tomatoes. In 1987, weed suppression varied between locations and differed from 1986. At Lafayette, rye treated 2 and 1 WBP tomatoes provided greater than 81% suppression of weed growth up to 8 WAP tomatoes. Rye mowed and the residues placed into a plot at a known density also reduced weed growth (60%) 8 WAP tomatoes. At Vincennes, however, rye treated 2 and 1 WBP in 1987 did not reduce weed growth later than 4 WAP tomatoes compared to the unweeded, bare ground treatment. The mowed rye residues at Vincennes suppressed weed growth (96%) up to 8 WAP tomatoes. Tomato yield was correlated to weed suppression. In 1986, tomato yield in the rye treated 2 WBP tomatoes was comparable to yield in the bare ground, weeded controls. However, tomato yield in rye plots treated 4 WBP tomatoes was similar to yield in the bare ground, unweeded control. In 1987, tomato yields in all rye plots (mowed, treated 2 and 1 WBP tomatoes) were similar to tomato yields in the bare ground, weeded control at Lafayette. At Vincennes, only the mowed rye treatment yielded comparably to the bare ground, weeded control. In general, rye plots that were weeded yielded similar to or up to 28% more than a bare ground, weeded control. Tomato yields were not reduced by rye residues. Tomato yields in rye residues that provided effective suppression of weed growth (greater than 80%) for a minimum of 4 to 5 WAP tomatoes were comparable to bare ground, weeded controls.


Author(s):  
Kuldeep Singh ◽  
Hardev Ram ◽  
Rakesh Kumar ◽  
R.K. Meena ◽  
Rakesh Kumar ◽  
...  

Background: Weeds are prime factor that adversely effects on growth, quality and yield of mungbean during summer and rainy season. Being a short duration crop, it faces heavy weed competition right from the early growth stages to harvesting. The critical period of crop weed competition in mungbean was initial 25-30 days, yield may be reduce up to 50-90% if weeds not manage at this stage. Hence, there is a need to find out the successful weed management strategies to realize higher growth and yield. The progressive transformation of agriculture concerning intensive use of herbicides is gaining status in recent years due to easy, lower cost, timeliness and successful controlling weeds. Therefore, keeping above information in view, the present study was undertaken to assess the effect of different weed management practices in summer mungbean under zero tillage condition to find out the better weed management, higher productivity and profitability.Methods: In this field-laboratory investigation during summer season, 2019, different herbicides were applied to manage weeds in mungbean. Eight treatments were applied based on various application windows. In the field and laboratory, the collected samples were determined for crop weed competition, yield attributes, yields and net returns. Result: The results revealed that weed free treatment was recorded lowest weed population at 30 DAS and harvest (1.8 and 2.9), weed dry weight (1.1 and 1.9g) and highest weed control efficiency (96.3 and 94.9%) followed by Pendimethalin (PE) fb one HW and Shaked (Propaquizafop + Imezathyper) application. The similar results also observed in nutrients removed by weeds. Among yield attributes, weed free treatment recorded the longest pod length, no. of pods/plant, no. of seeds/pod and test weight (7.9, 21.0, 9.7 and 43.0g, respectively) which was at par with Pendimethalin (PE) fb one HW and Shaked (Propaquizafop + Imezathyper) application. The magnitude of seed yield was increased under weed free (10.1 q/ha) and Shaked (Propaquizafop + Imezathyper) (9.5 q/ha) treatments by 127.9 and 113.8%, respectively over weedy check. Application of Shaked (Propaquizafop + Imezathyper) recorded highest net returns (Rs 55,079/ha) and B: C (2.8) over rest of the treatments. It can concluded that application of Shaked (Propaquizafop + Imezathyper) @ 2 L/ha at 20 DAS recommended for better weed control, higher yield and net returns of summer mungbean under zero tillage condition.


Author(s):  
A.A. Chavan ◽  
W.N. Narkhede ◽  
H.S. Garud

Background: Weeds are widely reported as a key constraint in organic agriculture. Soybean-chickpea is important cropping sequence adopted in Maharashtra State under irrigated condition. Weed management is a serious problem in both the crop and it mostly controlled through chemical weed control. Today, widespread use of herbicides has resulted in purporated environmental and health problem as well as residual problems to succeeding crops. Now a days residue free food requirement is high. In organic farming cultural and mechanical methods are necessary to break the weed cycle. So, keeping this point in view present investigation was carried out to evaluate organic weed management practices on growth, yield and weed control in soybean-chickpea sequence under irrigated condition. Methods: A field experiment was conducted during Kharif and rabi seasons of 2017-18 and 2018-19. The present investigation consisted of ten weed management practices viz. two hand weeding at 20-25 and 45-50 DAS, one hoeing 20-25 DAS + one hand weeding at 45-50 DAS, soybean + sunhemp incorporation after 35-40 DAS in kharif season and chickpea + safflower (2:1) in rabi season, stale seed bed + reduced spacing + 2 tonne of wheat straw + one hand weeding at 25 DAS, soil mulch at the time of sowing + one hand pulling at 25 DAS, incorporation of neem cake 1.5 tonne/ ha 15 days before sowing + one hand weeding at 25 DAS, soil solarization with 25 μ polythene mulch during summer + one hand weeding at 25 DAS, mulching with straw, weed free and weedy check. Result: The higher values of growth attributes was recorded by weed free treatment which was on par with two hand weeding at 20-25 and 45-50 DAS and soil solarization with 25 μ polythene mulch during summer + one hand weeding at 25 DAS and significantly superior over rest of the treatments during both the year study. Application of stale seed bed with reduced spacing and 2 tonne of wheat straw along with one hand weeding 25 DAS recorded higher soybean equivalent yield followed by soybean + sunhemp incorporation (35-45DAS) in kharif and chickpea + safflower (2:1) in rabi season during both the year. The lower weed density, dry weight and highest weed control efficiency at 40 days after sowing for both monocot and dicot weeds was recorded by weed free treatment followed by soil solarization with 25 μ polythene mulch during summer + one hand weeding at 25 DAS in soybean and chickpea during both the year.


Sign in / Sign up

Export Citation Format

Share Document