Response of Energycane to Preemergence and Postemergence Herbicides

2015 ◽  
Vol 29 (4) ◽  
pp. 810-820 ◽  
Author(s):  
Dennis C. Odero ◽  
Jose V. Fernandez ◽  
Hardev S. Sandhu ◽  
Maninder P. Singh

Energycane has been proposed as a potential, perennial bioenergy crop for lignocellulosic-derived fuel production in the United States. Herbicides currently used in sugarcane and other crops can potentially be used in energycane if there is acceptable tolerance. Also, to limit future invasion of energycane escapes, herbicides used for perennial grass control could potentially be used for management of escapes. In container studies conducted outside, aboveground and belowground biomass of energycane was measured to evaluate energycane tolerance to 9 PRE and 19 POST herbicides used in sugarcane and other crops. PRE application of atrazine, diuron, mesotrione, metribuzin, pendimethalin, andS-metolachlor at rates labeled for sugarcane did not significantly injure (< 3%) or reduce energycane biomass compared with the nontreated plants 28 and 56 d after treatment (DAT). Injury from clomazone (54%), flumioxazin (7%), and hexazinone (29%) was observed 28 DAT. Injury from flumioxazin was transient and was not observed at 56 DAT. At 56 DAT, energycane injury increased to 71 and 98%, respectively, for clomazone and hexazinone. Hexazinone and clomazone applied PRE significantly reduced biomass compared with the nontreated plants. At 28 DAT, POST application of 2,4-D amine, ametryn, asulam, atrazine, carfentrazone, dicamba, halosulfuron, mesotrione, metribuzin, and trifloxysulfuron at labeled rates for sugarcane did not injure or significantly reduce energycane biomass compared with the nontreated plants. Injury was observed when clethodim (99%), clomazone (51%), diuron (51%), flumioxazin (21%), glufosinate (84%), glyphosate (100%), hexazinone (100%), paraquat (66%), and sethoxydim (100%) were applied POST, and each of these treatments reduced energycane biomass compared with the nontreated plants. These results show that several PRE and POST herbicides used for weed management in sugarcane may potentially be used in energycane for weed control. Also, based on our results, clethodim, glyphosate, and sethoxydim would be effective for management of energycane escapes.

2020 ◽  
Vol 34 (4) ◽  
pp. 624-629 ◽  
Author(s):  
J. Anita Dille ◽  
Phillip W. Stahlman ◽  
Curtis R. Thompson ◽  
Brent W. Bean ◽  
Nader Soltani ◽  
...  

AbstractPotential yield losses in grain sorghum due to weed interference based on quantitative data from the major grain sorghum-growing areas of the United States are reported by the WSSA Weed Loss Committee. Weed scientists and extension specialists who researched weed control in grain sorghum provided data on grain sorghum yield loss due to weed interference in their region. Data were requested from up to 10 individual experiments per calendar year over 10 yr between 2007 and 2016. Based on the summarized information, farmers in Arkansas, Kansas, Missouri, Nebraska, South Dakota, and Texas would potentially lose an average of 37%, 38%, 30%, 56%, 61%, and 60% of their grain sorghum yield with no weed control, and have a corresponding annual monetary loss of US $19 million, 302 million, 7 million, 32 million, 25 million, and 314 million, respectively. The overall average yield loss due to weed interference was estimated to be 47% for this grain sorghum-growing region. Thus, US farmers would lose approximately 5,700 million kg of grain sorghum valued at approximately US $953 million annually if weeds are not controlled. With each dollar invested in weed management (based on estimated weed control cost of US $100 ha−1), there would be a return of US $3.80, highlighting the return on investment in weed management and the importance of continued weed science research for sustaining high grain sorghum yield and profitability in the United States.


2013 ◽  
Vol 6 (1) ◽  
pp. 140-146 ◽  
Author(s):  
Ryan M. Wersal ◽  
John D. Madsen ◽  
Joshua C. Cheshier

AbstractCommon reed (Phragmites australis) is a nonnative invasive perennial grass that is problematic in aquatic and riparian environments across the United States. Common reed often forms monotypic stands that displace native vegetation which provide food and cover for wildlife. To help maintain native habitats and manage populations of common reed in the United States, an understanding of its life history and starch allocation patterns are needed. Monthly biomass samples were harvested from sites throughout the Mobile River delta in southern Alabama, USA from January 2006 to December 2007 to quantify seasonal biomass and starch allocation patterns. Total biomass of common reed throughout the study was between 1375 and 3718 g m−2 depending on the season. Maximum aboveground biomass was 2200 ± 220 g m−2 in October of 2006 and 1302 ± 88 g m−2 in December of 2007. Maximum belowground biomass was seen in November of 2006 and 2007 with 1602 ± 233 and 1610 ± 517 g m−2 respectively. Biomass was related to ambient temperature, in that, as temperature decreased aboveground biomass (p = 0.05) decreased. Decreases in aboveground biomass were followed by an increase in belowground biomass (p < 0.01). Starch comprised 1 to 10% of aboveground biomass with peak temporary storage occurring in July and August 2006 and September to November of 2007. Belowground tissues stored the majority of starch for common reed regardless of the time of year. Overall, belowground tissues stored 5 to 20% of total starch for common reed with peak storage occurring in December 2006 and October 2007. Starch allocation to belowground tissues increased as temperatures decreased. Understanding seasonal life history patterns can provide information to guide management strategies by identifying the vulnerable points in biomass and starch reserves in common reed.


Weed Science ◽  
2015 ◽  
Vol 63 (SP1) ◽  
pp. 188-202 ◽  
Author(s):  
Stevan Z. Knezevic ◽  
Avishek Datta

There is an ever-larger need for designing an integrated weed management (IWM) program largely because of the increase in glyphosate-resistant weeds, not only in the United States but also worldwide. An IWM program involves a combination of various methods (cultural, mechanical, biological, genetic, and chemical) for effective and economical weed control (Swanton and Weise 1991). One of the first steps in designing an IWM program is to identify thecritical period for weed control(CPWC), defined as a period in the crop growth cycle during which weeds must be controlled to prevent crop yield losses (Zimdahl 1988).


Author(s):  
Stewart A. Isaacs ◽  
Mark D. Staples ◽  
Florian Allroggen ◽  
Dharik S. Mallapragada ◽  
Christoph P. Falter ◽  
...  

2010 ◽  
Vol 28 (1) ◽  
pp. 48-52 ◽  
Author(s):  
James Altland ◽  
Julie Ream

Abstract Butterfly bush (Buddleja davidii) is classified as invasive in several parts of the United States. Two experiments were conducted to evaluate the effectiveness of four herbicides and two application methods on postemergence butterfly bush control. The four herbicides included: Roundup (glyphosate), Aquamaster (glyphosate), Garlon (triclopyr), and Arsenal (imazapyr). Application methods included spraying foliage with a CO2 backpack sprayer, and applying herbicide concentrate to recently cut stems (cut-stump method). Plants were treated in September with the maximum labeled rate for each herbicide. Cut-stump rates were determined such that the same amount of active ingredient was applied as in the spray treatments. Applications were made to plants several months after planting to simulate control of small recently germinated plants, and again to plants over 1 year old to simulate control of larger and more established plants. Summarizing results over both plant sizes and from two repetitions of the experiment, Roundup and Aquamaster provided higher levels of control compared to Garlon and Arsenal early in the experiment. Cut-stump applications provided more rapid control than spray applications. Despite differences in control when evaluated several weeks after application, all treated plants were dead when evaluated the following spring.


2017 ◽  
Vol 95 ◽  
pp. 31-37 ◽  
Author(s):  
Prashant Jha ◽  
Vipan Kumar ◽  
Rakesh K. Godara ◽  
Bhagirath S. Chauhan

2013 ◽  
Vol 27 (2) ◽  
pp. 291-297 ◽  
Author(s):  
Kelly A. Barnett ◽  
A. Stanley Culpepper ◽  
Alan C. York ◽  
Lawrence E. Steckel

Glyphosate-resistant (GR) weeds, especially GR Palmer amaranth, are very problematic for cotton growers in the Southeast and Midsouth regions of the United States. Glufosinate can control GR Palmer amaranth, and growers are transitioning to glufosinate-based systems. Palmer amaranth must be small for consistently effective control by glufosinate. Because this weed grows rapidly, growers are not always timely with applications. With widespread resistance to acetolactate synthase-inhibiting herbicides, growers have few herbicide options to mix with glufosinate to improve control of larger weeds. In a field study using a WideStrike®cotton cultivar, we evaluated fluometuron at 140 to 1,120 g ai ha−1mixed with the ammonium salt of glufosinate at 485 g ae ha−1for control of GR Palmer amaranth 13 and 26 cm tall. Standard PRE- and POST-directed herbicides were included in the systems. Glufosinate alone injured the WideStrike® cotton less than 10%. Fluometuron increased injury up to 25% but did not adversely affect yield. Glufosinate controlled 13-cm Palmer amaranth at least 90%, and there was no improvement in weed control nor a cotton yield response to fluometuron mixed with glufosinate. Palmer amaranth 26 cm tall was controlled only 59% by glufosinate. Fluometuron mixed with glufosinate increased control of the larger weeds up to 28% and there was a trend for greater yields. However, delaying applications until weeds were 26 cm reduced yield 22% relative to timely application. Our results suggest fluometuron mixed with glufosinate may be of some benefit when attempting to control large Palmer amaranth. However, mixing fluometuron with glufosinate is not a substitute for a timely glufosinate application.


2018 ◽  
Vol 44 (2) ◽  
pp. 93-138 ◽  
Author(s):  
Robert Pollin ◽  
Brian Callaci

We develop a Just Transition framework for U.S. workers and communities that are currently dependent on domestic fossil fuel production. Our rough high-end estimate for such a program is a relatively modest $600 million per year. This level of funding would pay for (1) income, retraining, and relocation support for workers facing retrenchments; (2) guaranteeing the pensions for workers in the affected industries; and (3) mounting effective transition programs for what are now fossil fuel–dependent communities.


Sign in / Sign up

Export Citation Format

Share Document