A Correlation of Aviation Fuel Temperature Effect on Mean Drop Size in Pressure Swirl Spray

Author(s):  
Reza Alidoost Dafsari ◽  
Foad Vashahi ◽  
Shahnaz Rezaee ◽  
Jeekeun Lee
1996 ◽  
Vol 6 (4) ◽  
pp. 377-408 ◽  
Author(s):  
Cesar Dopazo ◽  
Javier Ballester
Keyword(s):  

2007 ◽  
Vol 17 (6) ◽  
pp. 529-550 ◽  
Author(s):  
Seoksu Moon ◽  
Choongsik Bae ◽  
Essam F. Abo-Serie ◽  
Jaejoon Choi

Author(s):  
Shaji S. Manipurath

The development of higher thermal stability fuels and the development of onboard fuel deoxygenation systems may permit the preheating of fuel up to about 755 K before the onset of pyrolysis. At a sufficiently high fuel temperature for a given combustion chamber pressure, the flash vaporization of liquid or supercritical state fuel can ensue upon injection into the chamber. The performance of standard aviation turbine engine fuel nozzles, designed for mechanically breaking up liquid sprays, may thus be significantly altered by the employment of severely preheated fuel. An evaluation of heated and superheated Jet A-1 sprays from a pressure-swirl atomizer was implemented in a purpose-built test facility. Laser sheet imaging of the spray yielded simultaneous axial cross-sectional maps of Mie-scatter and fluorescence signals. In addition, particle image velocimetry was also used to measure the spray droplet velocity-field. The results indicated that increasing the fuel’s dimensionless level of superheat ΔT* from −1.8 to 0.6 yielded significant changes in the spray structure; specifically, finer droplet sizes, a more uniform dropsize distribution across the spray, increased spray cone angle till about ΔT* = −0.8 followed by a contraction thereafter, marginally increased spray penetration, and significantly higher localised near nozzle tip droplet velocities. The measurements supported the hypothesis that the initial hollow-cone spray structure evolves to a near solid-cone structure with a central vapour core as the fuel is superheated.


Fuel ◽  
2020 ◽  
pp. 119765
Author(s):  
Wenzhe Cai ◽  
Wei Li ◽  
Yiyu Zhao ◽  
Yingwen Yan

Author(s):  
X. F. Wang ◽  
A. H. Lefebvre

The spray characteristics of six simplex atomizers are examined in a pressure vessel using a standard light diffraction technique. Attention is focused on the effects of liquid properties, nozzle flow number, spray cone angle, and ambient air pressure on mean drop size and drop-size distribution. For all nozzles and all liquids it is found that continuous increase in air pressure above the normal atmospheric value causes the SMD to first increase up to a maximum value and then decline. An explanation for this characteristic is provided in terms of the measurement technique employed and the various competing influences on the overall atomization process. The basic effect of an increase in air pressure is to improve atomization, but this trend is opposed by contraction of the spray angle which reduces the relative velocity between the drops and the surrounding air, and also increases the possibility of droplet coalescence.


Author(s):  
Xiongjie Fan ◽  
Cunxi Liu ◽  
Yong Mu ◽  
Haitao Lu ◽  
Jinhu Yang ◽  
...  

Spray characteristics of a pressure-swirl atomizer are investigated using high-speed shadowgraph technique under different pressure drops (Δ P) and fuel temperatures ( T). An image processing method is developed using MATLAB. The results illustrate that the mass flow rate climbs with the increase of Δ P, while the discharge coefficient ( Cd) decreases firstly and then climbs with the increase of Δ P. Δ P has larger effect on the cone angle relative to fuel temperature. With the increase of Δ P, the shape of liquid film changes from ‘onion’ to ‘tulip’ and finally be fully developed spray cone. Meanwhile, the surface of liquid film becomes smoother with the increase of Δ P. The average breakup length climbs, then decreases to nearly a constant value with the increase of Δ P, which is induced by the “Impact wave,” surface wave, and turbulent energy. There are little differences on the shape of the liquid film under different temperatures, and temperature has different influence on breakup length under different Δ P. Both the fuel temperature and Δ P have significant impact on the surface wavelength ( λ) and velocities ( U, V) of surface wave. The width of fuel stream becomes larger with the increase of Δ P and fuel temperature. The results can further deepen the understanding of spray characteristics of pressure-swirl atomizer.


1990 ◽  
Vol 112 (4) ◽  
pp. 579-584 ◽  
Author(s):  
S. K. Chen ◽  
A. H. Lefebvre ◽  
J. Rollbuhler

The spray characteristics of several different simplex pressure-swirl nozzles are examined using water as the working fluid. Measurements of mean drop size, dropsize distribution, effective spray cone angle, and circumferential liquid distribution are carried out over wide ranges of injection pressure. Eight different nozzles are employed in order to achieve a wide variation in the length/diameter ratio of the final discharge orifice. Generally, it is found that an increase in discharge orifice length/diameter ratio (lo/do) increases the mean drop size in the spray and reduces the spray cone angle. The circumferential liquid distribution is most uniform when lo/do=2. If lo/do is raised above or lowered below this optimum value, the circumferential uniformity of the liquid distribution is impaired. The observed effects of lo/do on spray characteristics are generally the same regardless of whether the change in lo/do is accomplished by varying lo or do.


Sign in / Sign up

Export Citation Format

Share Document