Molecular Mechanisms of Nuclear Protein Transport

1997 ◽  
Vol 7 (1-2) ◽  
pp. 61-72 ◽  
Author(s):  
Junona Moroianu
1997 ◽  
Vol 272 (34) ◽  
pp. 21534-21539 ◽  
Author(s):  
Bryce M. Paschal ◽  
Christian Fritze ◽  
Tinglu Guan ◽  
Larry Gerace

2010 ◽  
Vol 98 (3) ◽  
pp. 374a
Author(s):  
Daniel Basilio ◽  
Alan Finkelstein

2021 ◽  
Vol 13 ◽  
Author(s):  
Katarzyna M. Grochowska ◽  
Julia Bär ◽  
Guilherme M. Gomes ◽  
Michael R. Kreutz ◽  
Anna Karpova

Pyramidal neurons exhibit a complex dendritic tree that is decorated by a huge number of spine synapses receiving excitatory input. Synaptic signals not only act locally but are also conveyed to the nucleus of the postsynaptic neuron to regulate gene expression. This raises the question of how the spatio-temporal integration of synaptic inputs is accomplished at the genomic level and which molecular mechanisms are involved. Protein transport from synapse to nucleus has been shown in several studies and has the potential to encode synaptic signals at the site of origin and decode them in the nucleus. In this review, we summarize the knowledge about the properties of the synapto-nuclear messenger protein Jacob with special emphasis on a putative role in hippocampal neuronal plasticity. We will elaborate on the interactome of Jacob, the signals that control synapto-nuclear trafficking, the mechanisms of transport, and the potential nuclear function. In addition, we will address the organization of the Jacob/NSMF gene, its origin and we will summarize the evidence for the existence of splice isoforms and their expression pattern.


2000 ◽  
Vol 64 (3) ◽  
pp. 515-547 ◽  
Author(s):  
Harold Tjalsma ◽  
Albert Bolhuis ◽  
Jan D. H. Jongbloed ◽  
Sierd Bron ◽  
Jan Maarten van Dijl

SUMMARY One of the most salient features of Bacillus subtilis and related bacilli is their natural capacity to secrete a variety of proteins into their environment, frequently to high concentrations. This has led to the commercial exploitation of bacilli as major “cell factories” for secreted enzymes. The recent sequencing of the genome of B. subtilis has provided major new impulse for analysis of the molecular mechanisms underlying protein secretion by this organism. Most importantly, the genome sequence has allowed predictions about the composition of the secretome, which includes both the pathways for protein transport and the secreted proteins. The present survey of the secretome describes four distinct pathways for protein export from the cytoplasm and approximately 300 proteins with the potential to be exported. By far the largest number of exported proteins are predicted to follow the major “Sec” pathway for protein secretion. In contrast, the twin-arginine translocation “Tat” pathway, a type IV prepilin-like export pathway for competence development, and ATP-binding cassette transporters can be regarded as “special-purpose” pathways, through which only a few proteins are transported. The properties of distinct classes of amino-terminal signal peptides, directing proteins into the various protein transport pathways, as well as the major components of each pathway are discussed. The predictions and comparisons in this review pinpoint important differences as well as similarities between protein transport systems in B. subtilis and other well-studied organisms, such as Escherichia coli and the yeast Saccharomyces cerevisiae. Thus, they may serve as a lead for future research and applications.


1995 ◽  
Vol 69 (1) ◽  
pp. 53-56
Author(s):  
Naoko Imamoto ◽  
Yoshihiro Yoneda

2007 ◽  
Vol 86 (10) ◽  
pp. 951-955 ◽  
Author(s):  
K.M. Galler ◽  
A. Yasue ◽  
A.C. Cavender ◽  
P. Bialek ◽  
G. Karsenty ◽  
...  

The molecular mechanisms that maintain the equilibrium of odontoblast progenitor cells in dental pulp are unknown. Here we tested whether homeostasis in dental pulp is modulated by Twist-1, a nuclear protein that partners with Runx2 during osteoblast differentiation. Our analysis of Twist-1(+/−) mice revealed phenotypic changes that involved an earlier onset of dentin matrix formation, increased alkaline phosphatase activity, and pulp stones within the pulp. RT-PCR analyses revealed Twist-1 expression in several adult organs, including pulp. Decreased levels of Twist-1 led to higher levels of type I collagen and Dspp gene expression in perivascular cells associated with the pulp stones. In mice heterozygous for both Twist-1 and Runx2 inactivation, the phenotype of pulp stones appeared completely rescued. These findings suggest that Twist-1 plays a key role in restraining odontoblast differentiation, thus maintaining homeostasis in dental pulp. Furthermore, Twist-1 functions in dental pulp are dependent on its interaction with Runx2.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1611-1611
Author(s):  
Sumiko Kurachi ◽  
Taku Tanaka ◽  
Muneyoshi Kanai ◽  
Emi Suenaga ◽  
Elena Solovieva ◽  
...  

Abstract We previously reported the first molecular mechanism underlying the age-related homeostasis, ASE/AIE-mediated genetic mechanism for age-related regulation of gene expression, which turned out to be a mechanism of puberty-onset gene switching, specifically controlling a group of genes for their expression from puberty into old age (Kurachi & Kurachi J Thromb Haemost 2005; Zahng et al J Biol Chem277:4532, 2002; Kurachi et al Science285:739, 1999). This led us to successful construction of a transgenic mouse model of hemophilia B Leyden, a unique subset of hemophilia B with its mechanism being remained mysterious, robustly mimicking its unusual pattern of puberty-onset spontaneous amelioration. With this background, we hypothesized that besides the ASE/AIE-mediated mechanism, there exist more unidentified fundamental regulatory mechanisms for age-related homeostasis, which individually or in various combinations generate age-related complex and dynamic regulatory patterns of liver proteins. We launched a series of global and quantitative analysis of age-related changes in expression of liver nuclear proteins of mice (C57BL/6xSJL, [male], 1 through-24 month of age) by taking a procedure composed of two-dimensional gel electrophoresis (2DE) for separation and quantification of liver nuclear protein spots and of MALDI-TOF/MS PMF analyses to identify proteins in the spots. Out of over 6000 spots recognized and quantified in 2DE, 4547 protein spots were subjected to MALDI-TOF/MS analysis for protein identification. Finally, 2765 protein spots including many isomers were found unique. Systematic analyses of their age-related expression identified several major phases in protein expression throughout the lifespan. These findings supported our hypothesis that there exist multiple novel molecular mechanisms responsible for maintaining age-related homeostasis. The comprehensive liver nuclear protein data set was then used to construct a comprehensive database, which allows rapid and reliable searches for expression of specific proteins, their age-related dynamic profiles, isomers, protein identification from 2DE image, and other related information. This will serve as a valuable platform resource for studying epigenetic challenges, evaluation of drugs as well as gaining further insights into the molecular mechanisms underlying age-related homeostasis.


2009 ◽  
Vol 8 (8) ◽  
pp. 1134-1145 ◽  
Author(s):  
Simone Spork ◽  
Jan A. Hiss ◽  
Katharina Mandel ◽  
Maik Sommer ◽  
Taco W. A. Kooij ◽  
...  

ABSTRACT Many apicomplexan parasites, including Plasmodium falciparum, harbor a so-called apicoplast, a complex plastid of red algal origin which was gained by a secondary endosymbiotic event. The exact molecular mechanisms directing the transport of nuclear-encoded proteins to the apicoplast of P. falciparum are not well understood. Recently, in silico analyses revealed a second copy of proteins homologous to components of the endoplasmic reticulum (ER)-associated protein degradation (ERAD) system in organisms with secondary plastids, including the malaria parasite P. falciparum. These proteins are predicted to be endowed with an apicoplast targeting signal and are suggested to play a role in the transport of nuclear-encoded proteins to the apicoplast. Here, we have studied components of this ERAD-derived putative preprotein translocon complex in malaria parasites. Using transfection technology coupled with fluorescence imaging techniques we can demonstrate that the N terminus of several ERAD-derived components targets green fluorescent protein to the apicoplast. Furthermore, we confirm that full-length PfsDer1-1 and PfsUba1 (homologues of yeast ERAD components) localize to the apicoplast, where PfsDer1-1 tightly associates with membranes. Conversely, PfhDer1-1 (a host-specific copy of the Der1-1 protein) localizes to the ER. Our data suggest that ERAD components have been “rewired” to provide a conduit for protein transport to the apicoplast. Our results are discussed in relation to the nature of the apicoplast protein transport machinery.


2012 ◽  
Vol 17 (7) ◽  
pp. 525-535 ◽  
Author(s):  
Toshihiro Sekimoto ◽  
Yoshihiro Yoneda

Sign in / Sign up

Export Citation Format

Share Document