twist 1
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 26)

H-INDEX

20
(FIVE YEARS 4)

2021 ◽  
Vol 22 (19) ◽  
pp. 10588
Author(s):  
Federico Armando ◽  
Samanta Mecocci ◽  
Virginia Orlandi ◽  
Ilaria Porcellato ◽  
Katia Cappelli ◽  
...  

Equine penile squamous cell carcinoma (epSCC) is the most frequent tumor of the external male genitalia, representing 67.5% of equine genital cancers. epSCC is associated with papilloma virus (PV) infection and has been recently proposed as a model for human PV-induced squamous cell carcinomas. It has already been suggested that epSCC might undergo epithelial-to-mesenchymal transition (EMT). This work aims to investigate in detail this process and the possible role of PV oncoproteins in epSCC. For this purpose, 18 penile SCCs were retrospectively selected and tested for both EcPV2 presence and oncoproteins (EcPV2 E6 and EcPV2 E7) expression. Moreover, immunohistochemical EMT characterization was carried out by analyzing the main epithelial markers (E-cadherin, β-catenin, and pan-cytokeratin AE3/AE1), the main mesenchymal markers (N-cadherin and vimentin), and the main EMT-related transcription factors (TWIST-1, ZEB-1). PCR analysis was positive for EcPV2 in 16 out of 18 samples. EMT was investigated in epSCC positive for EcPV2. The immunohistochemistry results suggested the presence of EMT processes in the neoplastic cells at the tumor invasive front. Moreover, the significant upregulation of RANKL, together with BCATN1, LEF1, and FOSL1 genes, might suggest a canonical Wnt pathway activation, similarly to what is reported in human penile squamous cell carcinomas


Author(s):  
Nazanin Heidari ◽  
Fatemeh Noroozi ◽  
Najmaldin Saki

Background: Among the known ABL mutations in chronic myeloid leukemia (CML), T315I is of particular importance. The T315I mutation may develop resistant cells that increase disease progression. TWIST-1 expression is impaired in patients with increased drug resistance. Objectives: The current study aimed to measure the expression of TWIST-1 gene in CML patients to investigate its association with T315I mutation. Methods: Peripheral blood samples were taken from 40 CML patients. The expression of TWIST-1 and BCR-ABL1 genes was quantified by real-time polymerase chain reaction (PCR). The gene expression was evaluated by REST software. cDNA was used for amplification refractory mutation system (ARMS)-PCR reaction. Results: Of the 40 patients (age range: 19 - 72 years) participating in the study, 23 (57.7%) were female, and 17 (42.5%) were male. The expression of TWIST-1 gene was 43 ± 184.09-fold. The T315I mutation was detected in 3 (7.5%) patients. Conclusions: According to our results, the TWIST-1 gene expression in patients with T315I mutation was significantly higher than patients without that mutation.


Author(s):  
Chun-Yuan Chang ◽  
Shi-Long Chang ◽  
Jyh-Der Leu ◽  
Yu-Chan Chang ◽  
Michael Hsiao ◽  
...  

2021 ◽  
Vol 14 (7) ◽  
pp. 101096
Author(s):  
Long Jin ◽  
Jun Zhang ◽  
Hui-Qun Fu ◽  
Xi Zhang ◽  
Yu-Liang Pan
Keyword(s):  

Bionatura ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 1757-1762
Author(s):  
Faezeh Karami ◽  
Narges Maleki ◽  
Arefeh Khazraei Monfared ◽  
Sayeh Jafari Marandi

Breast cancer is one of the most common malignancies, and like most cancers, most cases are caused by somatic mutations. Due to estrogen's role in the growth, differentiation, and division of breast and endometrial cancer cells, tamoxifen is used as an estrogen receptor antagonist in breast cancer cells with estrogen receptor (ER +) has a special place, which unfortunately in one-third of the Cases are resisted. This study aimed to investigate the effect of tamoxifen-treated tumor-derived exosomes on the expression pattern of Twist and Bcl-2 oncogenic genes in fibroblast cells. MCF-7 breast cancer cell line and fibroblast cells were purchased and cultured in a complete culture medium. After the appropriate number of cells was reached, they were treated with the appropriate concentration of tamoxifen. Cellular supernatant was then gathered in flasks, and exosomes were extracted from them. After extracting RNA from exosomes and cDNA synthesis, the expression level of miR-206, Twist-1, and Bcl-2 genes were evaluated using the Real-Time PCR method. The electronic microscope results confirmed the correctness of the exosomes isolated from the tumor cell culture medium. It has also been shown that tamoxifen treatment increases the expression of miR-206 in exosomes derived from breast tumor cells. The control group which has been kept untreated induced the expression level of Twist-1 and Bcl-2 genes time-dependently. However, when tamoxifen-treated tumor-derived exosomes treated the target cells, the expression level of oncogenic miRs Twist-1 and Bcl-2 were declined over time. Overall, this study showed that tamoxifen treatment on breast cancer cells could apply its antioncogenic effects on tumor stromal cells, such as fibroblasts, by altering the expression levels of exosomal microRNAs in tumor cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aliki Ntzifa ◽  
Areti Strati ◽  
Galatea Kallergi ◽  
Athanasios Kotsakis ◽  
Vassilis Georgoulias ◽  
...  

AbstractLiquid biopsy is a tool to unveil resistance mechanisms in NSCLC. We studied changes in gene expression in CTC-enriched fractions of EGFR-mutant NSCLC patients under osimertinib. Peripheral blood from 30 NSCLC patients before, after 1 cycle of osimertinib and at progression of disease (PD) was analyzed by size-based CTC enrichment combined with RT-qPCR for gene expression of epithelial (CK-8, CK-18, CK-19), mesenchymal/EMT (VIM, TWIST-1, AXL), stem cell (ALDH-1) markers, PD-L1 and PIM-1. CTCs were also analyzed by triple immunofluorescence for 45 identical blood samples. Epithelial and stem cell profile (p = 0.043) and mesenchymal/EMT and stem cell profile (p = 0.014) at PD were correlated. There was a strong positive correlation of VIM expression with PIM-1 expression at baseline and increased PD-L1 expression levels at PD. AXL overexpression varied among patients and high levels of PIM-1 transcripts were detected. PD-L1 expression was significantly increased at PD compared to baseline (p = 0.016). The high prevalence of VIM positive CTCs suggest a dynamic role of EMT during osimertinib treatment, while increased expression of PD-L1 at PD suggests a theoretical background for immunotherapy in EGFR-mutant NSCLC patients that develop resistance to osimertinib. This observation merits to be further evaluated in a prospective immunotherapy trial.


Author(s):  
Georgina Gallucci ◽  
Estefanía Massa ◽  
Carlos C. Funes ◽  
Roberto Tozzini ◽  
Sergio Ghersevich

Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2318
Author(s):  
Federico Armando ◽  
Francesco Godizzi ◽  
Elisabetta Razzuoli ◽  
Fabio Leonardi ◽  
Mario Angelone ◽  
...  

Squamous cell carcinoma (SCC) is one of the most frequent tumors of skin and muco-cutaneous junctions in the horse. Equine papillomavirus type 2 (EcPV2) has been detected in equine SCC of the oral tract and genitals, and recently also in the larynx. As human squamous cell carcinoma of the larynx (SCCL), it is strongly etiologically associated with high-risk papillomavirus (h-HPV) infection. This study focuses on tumor cells behavior in a naturally occurring tumor that can undergo the so-called epithelial to mesenchymal transition (EMT). A SCCL in a horse was investigated by immunohistochemistry using antibodies against E-cadherin, pan-cytokeratin AE3/AE1, β-catenin, N-cadherin, vimentin, ZEB-1, TWIST, and HIF-1α. EcPV2 DNA detection and expression of oncogenes in SCC were investigated. A cadherin switch and an intermediate filaments rearrangement within primary site tumor cells together with the expression of the EMT-related transcription factors TWIST-1, ZEB-1, and HIF-1α were observed. DNA obtained from the tumor showed EcPV2 positivity, with E2 gene disruption and E6 gene dysregulation. The results suggest that equine SCCL might be a valuable model for studying EMT and the potential interactions between EcPV2 oncoproteins and the EMT process in SCCL.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Clara Pribadi ◽  
Esther Camp ◽  
Dimitrios Cakouros ◽  
Peter Anderson ◽  
Carlotta Glackin ◽  
...  

Abstract Background During development, excessive osteogenic differentiation of mesenchymal progenitor cells (MPC) within the cranial sutures can lead to premature suture fusion or craniosynostosis, leading to craniofacial and cognitive issues. Saethre-Chotzen syndrome (SCS) is a common form of craniosynostosis, caused by TWIST-1 gene mutations. Currently, the only treatment option for craniosynostosis involves multiple invasive cranial surgeries, which can lead to serious complications. Methods The present study utilized Twist-1 haploinsufficient (Twist-1del/+) mice as SCS mouse model to investigate the inhibition of Kdm6a and Kdm6b activity using the pharmacological inhibitor, GSK-J4, on calvarial cell osteogenic potential. Results This study showed that the histone methyltransferase EZH2, an osteogenesis inhibitor, is downregulated in calvarial cells derived from Twist-1del/+ mice, whereas the counter histone demethylases, Kdm6a and Kdm6b, known promoters of osteogenesis, were upregulated. In vitro studies confirmed that siRNA-mediated inhibition of Kdm6a and Kdm6b expression suppressed osteogenic differentiation of Twist-1del/+ calvarial cells. Moreover, pharmacological targeting of Kdm6a and Kdm6b activity, with the inhibitor, GSK-J4, caused a dose-dependent suppression of osteogenic differentiation by Twist-1del/+ calvarial cells in vitro and reduced mineralized bone formation in Twist-1del/+ calvarial explant cultures. Chromatin immunoprecipitation and Western blot analyses found that GSK-J4 treatment elevated the levels of the Kdm6a and Kdm6b epigenetic target, the repressive mark of tri-methylated lysine 27 on histone 3, on osteogenic genes leading to repression of Runx2 and Alkaline Phosphatase expression. Pre-clinical in vivo studies showed that local administration of GSK-J4 to the calvaria of Twist-1del/+ mice prevented premature suture fusion and kept the sutures open up to postnatal day 20. Conclusion The inhibition of Kdm6a and Kdm6b activity by GSK-J4 could be used as a potential non-invasive therapeutic strategy for preventing craniosynostosis in children with SCS. Graphical abstract Pharmacological targeting of Kdm6a/b activity can alleviate craniosynostosis in Saethre-Chotzen syndrome. Aberrant osteogenesis by Twist-1 mutant cranial suture mesenchymal progenitor cells occurs via deregulation of epigenetic modifiers Ezh2 and Kdm6a/Kdm6b. Suppression of Kdm6a- and Kdm6b-mediated osteogenesis with GSK-J4 inhibitor can prevent prefusion of cranial sutures.


2020 ◽  
Vol 9 (10) ◽  
pp. 6178-6188
Author(s):  
Cheng Zhao ◽  
Xiheng Hu ◽  
Shiyu Tong ◽  
Miao Mo ◽  
Wei He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document