THE INFLUENCES OF TILTING CONFIGURATION AND HEAT FLUX ON THE TEMPERATURE UNIFORMITY OF VAPOR CHAMBER IN A LIQUID COOLING SYSTEM

Author(s):  
Weiping Li ◽  
Longjian Li ◽  
Wenzhi Cui
Author(s):  
Koichi Mashiko ◽  
Masataka Mochizuki ◽  
Yuji Saito ◽  
Yasuhiro Horiuchi ◽  
Thang Nguyen ◽  
...  

Recently energy saving is most important concept for all electric products and production. Especially, in Data-Center cooling system, power consumption of current air cooling system is increasing. For not only improving thermal performance but also reducing electric power consumption of this system, liquid cooling system has been developed. This paper reports the development of cold plate technology and vapor chamber application by using micro-channel fin. In case of cold plate application, micro-channel fin technology is good for compact space design, high thermal performance, and easy for design and simulation. Another application is the evaporating surface for vapor chamber. The well-known devices for effective heat transfer or heat spreading with the lowest thermal resistance are heat pipes and vapor chamber, which are two-phase heat transfer devices with excellent heat spreading and heat transfer characteristics. Normally, vapor chamber is composed of sintered power wick. Vapor chamber container is mechanically supported by stamped pedestal or wick column or solid column, but the mechanical strength is not enough strong. So far, the application is limited in the area of low strength assembly. Sometime the mechanical supporting frame is design for preventing deformation. In this paper, the testing result of sample is described that thermal resistance between the heat source and the ambient can be improved approximately 0.1°C/W by using the micro-channel vapor chamber. Additionally, authors presented case designs using vapor chamber for cooling computer processors, and proposed ideas of using micro-channel vapor chamber for heat spreading to replace the traditional metal plate heat spreader.


Author(s):  
Vahideh Radmard ◽  
Yaser Hadad ◽  
Srikanth Rangarajan ◽  
Cong H. Hoang ◽  
Najmeh Fallahtafti ◽  
...  

Author(s):  
Yi. Feng ◽  
Y. Wang ◽  
C. Y. Huang

The increasing power consumption of microelectronic systems and the dense layout of semiconductor components leave very limited design spaces with tight constraints for the thermal solution. Conventional thermal management approaches, such as extrusion, fold-fin, and heat pipe heat sinks, are somehow reaching their performance limits, due to the geometry constraints. Currently, more studies have been carried out on the liquid cooling technologies, as the flexible tubing connection of liquid cooling system makes both the accommodation in constrained design space and the simultaneous cooling of multi heating sources feasible. To significantly improve the thermal performance of a liquid cooling system, heat exchangers with more liquid-side heat transfer area with acceptable flow pressure drop are expected. This paper focuses on the performance of seven designs of source heat exchanger (cold plate). The presented cold plates are all made in pure copper material using wire cutting, soldering, brazing, or sintering process. Enhanced heat transfer surfaces such as micro channel and cooper mesh are investigated. Detailed experiments have been conducted to understand the performance of these seven cooper cold plates. The same radiators, fan, and water pump were connected with each cooper cold plate to investigate the overall thermal performance of liquid cooling system. Water temperature readings at the inlets and outlets of radiators, pump, and colder plate have been taken to interpret the thermal resistance distribution along the cooling loop.


2020 ◽  
Vol 318 ◽  
pp. 01004
Author(s):  
Miroslav Blatnický ◽  
Ján Dižo

In this article, authors focus on the design and construction of a real prototype of an engine mechanism with rotating cylinders and its using mainly in piston combustion engines. It is assumed, that the normal force of a piston will be completely eliminated, because the swing angle of a connecting rod will equal to zero during the whole working cycle, since the connecting arm of the piston moves just the cylinder axis. It will by allowed by the conceptual design of the mechanism presented in this article. As rotating blocks of cylinders concurrently act as a flywheel, it is proposed, that in this way there is possible to save the mass of additional flywheels. Moreover, liquid cooling system is not necessary, because the rotating cylinders sufficiently transfer heat to ambient air. In addition, the output of torque will be reached without necessity of gear transmission, which results to decreasing of needs of mechanism lubrication. Other advance of the designed mechanism are two outputs. The first output is low-speed and it goes out from rotating cylinders, i. e. from the slider-crank mechanism with revolutions n1. The other output is high-speed, from the crankshaft with revolutions n2. Because of more favourable properties of the mechanism, authors have decided to create a real device to confirm all mentioned advantages of the mechanism by the suitable way.


2019 ◽  
Vol 126 ◽  
pp. 00031 ◽  
Author(s):  
lnur N. Madyshev ◽  
Aliya I. Khafizova ◽  
Oksana S. Dmitrieva

This paper deals with the studies of cooling tower, operated with the contactless evaporative cooling technology. The authors developed the cooling tower with a three-flow liquid cooling system. The authors conducted the numerical studies of gas-liquid flow dynamics in the inclined-corrugated elements of checker filling unit that allows to give us an idea of two-phase flow structure, its movement throughout the checker filling, as well as to assess the influence of mode parameters on the efficiency of collecting the liquid drops and the range of stable operation of device. The most effective operation of this device is at the pressure drop of 100 Pa, while developing the average air flow rate in the element up to 3.2 m/s.


Sign in / Sign up

Export Citation Format

Share Document