INFLUENCE OF SUBSTRATE COMPOSITION, OXIDE SCALE MORPHOLOGY AND OTHER PHYSICAL PARAMETERS ON THE RESIDUAL STRESSES IN ALUMINA SCALES DEVELOPED AT HIGH TEMPERATURE ON FeCrAl ALLOYS

Author(s):  
B. Lesage ◽  
K. Messaoudi ◽  
A.M. Huntz ◽  
J.L. Lebrun
2019 ◽  
Vol 93 (1-2) ◽  
pp. 29-52
Author(s):  
E. Larsson ◽  
J. Liske ◽  
A. Persdotter ◽  
T. Jonsson ◽  
J. -E. Svensson ◽  
...  

Abstract The influence of alkali- and chlorine-containing compounds on the corrosion of superheater alloys has been studied extensively. The current paper instead investigates the corrosive effects of KCl and HCl under conditions relevant to waterwall conditions. A low-alloy (Fe-2.25Cr-1Mo) steel was exposed to KCl(s), 500 vppm HCl(g) and (KCl + HCl) in the presence of 5%O2 and 20% H2O at 400 °C. The results indicate that alloy chlorination by KCl occurs by an electrochemical process, involving cathodic formation of chemisorbed KOH on the scale surface and anodic formation of solid FeCl2 at the bottom of the scale. The process is accompanied by extensive cracking and delamination of the iron oxide scale, resulting in a complex, convoluted scale morphology. Adding 500 vppm HCl to the experimental environment (KCl + HCl) initially greatly accelerated the formation of FeCl2 at the scale/alloy interface. The accelerated alloy chlorination is attributed to HCl reacting with KOH at the scale surface, causing the cathodic process to be depolarized. A rapid slowing down of the rate of chlorination and corrosion in KCl + HCl environment was observed which was attributed to the electronically insulating nature of the FeCl2 layer which forms at the bottom of the scale, disconnecting the anodic and cathodic regions.


2003 ◽  
Vol 20 (4) ◽  
pp. 649-655 ◽  
Author(s):  
Raphaëlle Peraldi ◽  
Daniel Monceau ◽  
Sylvain Jean ◽  
Bernard Pieraggi

Alloy Digest ◽  
2013 ◽  
Vol 62 (2) ◽  

Abstract Alkrothal 720 is one of a family of ferritic FeCrAl alloys used in resistance wires. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance as well as forming. Filing Code: SS-1136. Producer or source: Kanthal AB.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 479
Author(s):  
Yang Zhao ◽  
Fan Sun ◽  
Peng Jiang ◽  
Yongle Sun

The effects of surface roughness on the stresses in an alumina scale formed on a Fecralloy substrate are investigated. Spherical indenters were used to create indents with different radii and depths to represent surface roughness and then the roughness effect was studied comprehensively. It was found that the residual stresses in the alumina scale formed around the rough surface are almost constant and they are dominated by the curvature rather than the depth of the roughness. Oxidation changes the surface roughness. The edge of the indent was sharpened after oxidation and the residual stress there was released presumably due to cracking. The residual stresses in the alumina scale decrease with increase in oxidation time, while the substrate thickness has little effect, given that the substrate is thicker than the alumina scale. Furthermore, the effect of roughness on the oxide growth stress is analysed. This work indicates that the surface roughness should be considered for evaluation of stresses in coatings.


Author(s):  
T. Sand ◽  
A. Edgren ◽  
C. Geers ◽  
V. Asokan ◽  
J. Eklund ◽  
...  

AbstractA new approach to reduce the chromium and aluminium concentrations in FeCrAl alloys without significantly impairing corrosion resistance is to alloy with 1–2 wt.% silicon. This paper investigates the “silicon effect” on oxidation by comparing the oxidation behavior and scale microstructure of two FeCrAl alloys, one alloyed with silicon and the other not, in dry and wet air at 600 °C and 800 °C. Both alloys formed thin protective oxide scales and the Cr-evaporation rates were small. In wet air at 800 °C the Si-alloyed FeCrAl formed an oxide scale containing mullite and tridymite together with α- and γ-alumina. It is suggested that the reported improvement of the corrosion resistance of Al- and Cr-lean FeCrAl’s by silicon alloying is caused by the appearance of Si-rich phases in the scale.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3764
Author(s):  
Krzysztof Aniołek ◽  
Adrian Barylski ◽  
Marian Kupka

High-temperature oxidation was performed at temperatures from 600 to 750 °C over a period of 24 h and 72 h. It was shown in the study that the oxide scale became more homogeneous and covered the entire surface as the oxidation temperature increased. After oxidation over a period of 24 h, the hardness of the produced layers increased as the oxidation temperature increased (from 892.4 to 1146.6 kgf/mm2). During oxidation in a longer time variant (72 h), layers with a higher hardness were obtained (1260 kgf/mm2). Studies on friction and wear characteristics of titanium were conducted using couples with ceramic balls (Al2O3, ZrO2) and with high-carbon steel (100Cr6) balls. The oxide films produced at a temperature range of 600–750 °C led to a reduction of the wear ratio value, with the lowest one obtained in tests with the 100Cr6 steel balls. Frictional contact of Al2O3 balls with an oxidized titanium disc resulted in a reduction of the wear ratio, but only for the oxide scales produced at 600 °C (24 h, 72 h) and 650 °C (24 h). For the ZrO2 balls, an increase in the wear ratio was observed, especially when interacting with the oxide films obtained after high-temperature oxidation at 650 °C or higher temperatures. The increase in wear intensity after titanium oxidation was also observed for the 100Cr6 steel balls.


Sign in / Sign up

Export Citation Format

Share Document