Experimental Investigation of Heat Transfer Augmentation on Automobile Radiator operated with MWCNT Nanofluid by Axisymmetric Air Jet Impingement through Confined Channel

2018 ◽  
Author(s):  
M. Peeraiah ◽  
K. Nagamalleswara Rao ◽  
B. Balakrishna
2019 ◽  
Vol 26 (5) ◽  
pp. 513-534
Author(s):  
Madhu Sruthi Emani ◽  
Abhik Nayak ◽  
Achin Kumar Chowdhuri ◽  
Bijan Kumar Mandal ◽  
Sujoy Kumar Saha

Author(s):  
Jinqi Zhu ◽  
Ruifeng Dou ◽  
Ye Hu ◽  
Shixing Zhang ◽  
Xuyun Wang

Author(s):  
Johnny S. Issa ◽  
Alfonso Ortega

An experimental investigation was conducted to explore the flow behavior, pressure drop, and heat transfer due to free air jet impingement on square in-line pin fin heat sinks (PFHS) mounted on a plane horizontal surface. A parametrically consistent set of aluminum heat sinks with fixed base dimension of 25 × 25 mm was used, with pin heights varying between 12.5 mm and 22.5 mm, and fin thickness between 1.5 mm and 2.5 mm. A 6:1 contracting nozzle having a square outlet cross sectional area of 25 × 25 mm was used to blow air at ambient temperature on the top of the heat sinks with velocities varying from 2 to 20 m/s. The ratio of the gap between the jet exit and the pin tips to the pin height, the so-called tip clearance ratio, was varied from 0 (no tip clearance) to 1. The stagnation pressure recovered at the center of the heat sink was higher for tall pins than short pins. The pressure loss coefficient showed a little dependence on Re, increased with increasing pin density, and pin diameter, and decreased with increasing pin height and clearance ratio. The overall base-to-ambient thermal resistance decreased with increasing Re number, pin density and pin diameter. Surprisingly, the dependence of the thermal resistance on the pin height and clearance ratio was shown to be mild at low Re, and to vanish at high Re number.


2009 ◽  
Vol 18 (4) ◽  
pp. 358-363 ◽  
Author(s):  
S. Kalaiselvam ◽  
M. S. Gugan ◽  
E. Kuraloviyan ◽  
R. Meganathan ◽  
A. Niruthiya Priyan ◽  
...  

2017 ◽  
Vol 21 (1 Part A) ◽  
pp. 279-288 ◽  
Author(s):  
Shuxia Qiu ◽  
Peng Xu ◽  
Liping Geng ◽  
Arun Mujumdar ◽  
Zhouting Jiang ◽  
...  

Air jet impingement is one of the effective cooling techniques employed in micro-electronic industry. To enhance the heat transfer performance, a cooling system with air jet impingement on a finned heat sink is evaluated via the computational fluid dynamics method. A two-dimensional confined slot air impinging on a finned flat plate is modeled. The numerical model is validated by comparison of the computed Nusselt number distribution on the impingement target with published experimental results. The flow characteristics and heat transfer performance of jet impingement on both of smooth and finned heat sinks are compared. It is observed that jet impingement over finned target plate improves the cooling performance significantly. A dimensionless heat transfer enhancement factor is introduced to quantify the effect of jet flow Reynolds number on the finned surface. The effect of rectangular fin dimensions on impingement heat transfer rate is discussed in order to optimize the cooling system. Also, the computed flow and thermal fields of the air impingement system are examined to explore the physical mechanisms for heat transfer enhancement.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6458
Author(s):  
Liaqat Hussain ◽  
Muhammad Mahabat Khan ◽  
Manzar Masud ◽  
Fawad Ahmed ◽  
Zabdur Rehman ◽  
...  

Jet impingement is considered to be an effective technique to enhance the heat transfer rate, and it finds many applications in the scientific and industrial horizons. The objective of this paper is to summarize heat transfer enhancement through different jet impingement methods and provide a platform for identifying the scope for future work. This study reviews various experimental and numerical studies of jet impingement methods for thermal-hydraulic improvement of heat transfer surfaces. The jet impingement methods considered in the present work include shapes of the target surface, the jet/nozzle–target surface distance, extended jet holes, nanofluids, and the use of phase change materials (PCMs). The present work also includes both single-jet and multiple-jet impingement studies for different industrial applications.


Author(s):  
Qiang Li ◽  
Yimin Xuan ◽  
Feng Yu ◽  
Junjie Tan

An experimental investigation was performed to study the heat transfer and flow features of Cu-water nanofluids (Cu particles with 26 nm diameter) in a submerged jet impingement cooling system. Three particular nozzle-to-heated surface distances (2, 4 and 6 mm) and four particle volume fractions (1.5%, 2.0%, 2.5% and 3.0%) are involved in the experiment. The experimental results reveal that the suspended nanoparticles increase the heat transfer performance of the base liquid in the jet impingement cooling system. Within the range of experimental parameters considered, it has been found that highest surface heat transfer coefficients can be achieved using a nozzle-to-surface distance of 4 mm and the nanofluid with 3.0% particle volume fraction. In addition, the experiments show that the system pressure drop of the dilute nanofluids is almost equal to that of water under the same entrance velocity.


Sign in / Sign up

Export Citation Format

Share Document