HEAT TRANSFER CHARACTERISTICS OF FERROFLUIDIC FLOW BETWEEN PARALLEL PLATES UNDER THE INFLUENCE OF STATIC AND TRANSIENT MAGNETIC FIELD

Author(s):  
Danvendra Singh ◽  
Sudip Shyam ◽  
Balkrishna Mehta
Author(s):  
S Shuchi ◽  
K Sakatani ◽  
H Yamaguchi

An investigation was conducted for heat transfer characteristics of binary magnetic fluid flow in a partly heated circular pipe experimentally. The boiling heat transfer characteristics on the effects of the relative position of the magnetic field to the heated region were particularly considered in the present study. From the experimental verification, the Nusselt number, representing boiling heat transfer characteristics, was obtained for various flow and magnetic conditions which were represented by the non-dimensional parameters of the Reynolds number and the magnetic pressure number. Additionally, the rate of change of the Nusselt number found by applying the magnetic field was also estimated and the optimal position of the field to the partly heated region was discussed. The results indicated that the effect of the magnetic field to the heat transfer rate from the heated wall was mainly subjected to the effect of the vortices induced in the magnetic field region and the possibility of controlling the heat transfer rate by applying an outer magnetic field to utilize the effect.


Author(s):  
Ali Mohammad Asadian ◽  
Omid Abouali ◽  
Mahmoud Yaghoubi ◽  
Goodarz Ahmadi

The present paper is concerned with the study of flow and heat transfer characteristics in the steady state free convective flow of Al2O3-waternanofluids in a square enclosure in the presence of magnetic field. Attention is given to the temperature variation of the electrical conductivity and its effect on the electromagnetic force induced by the motion of the nanofluid. A new experimental correlation recently presented in the literature was used for this aim. In all the earlier studies in this area the electrical conductivity variation of nanofluid with temperature was neglected. The fluid viscosity and thermal conductivity are assumed to vary as a function of temperature and this variation is modeled using the available experimental correlations. The governing differential equations are solved numerically using finite element method. The features of fluid flow and heat transfer characteristics are analyzed for various strengths of the magnetic field and different nanoparticle volume fractions. The results show that when the inclusion of the variation of the electrical conductivity with temperature in the numerical model noticeably affects the natural convection heat transfer in the studied rectangular cavity. The variations of Nusselt number for natural convection of Al2O3-water nanofluid with nanoparticle volume fractions are presented at various Rayleigh and Hartmann numbers.


Sign in / Sign up

Export Citation Format

Share Document