Effects of Fuel Viscosity and Ambient Temperature on Spray Characteristics from Multi-Hole Nozzle Injectors

1997 ◽  
Vol 24 (1-3) ◽  
pp. 45-53 ◽  
Author(s):  
T. F. Su ◽  
J. M. Kozma ◽  
C. B. Warrick ◽  
Patrick V. Farrell
2017 ◽  
Vol 822 ◽  
pp. 012039 ◽  
Author(s):  
Adiba Rhaodah Andsaler ◽  
Amir Khalid ◽  
Nor Sharifhatul Adila Abdullah ◽  
Azwan Sapit ◽  
Norrizam Jaat

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Wenhua Yuan ◽  
Jingjing Liao ◽  
Bei Li ◽  
Wenjun Zhong

The new blended fuel (gasoline/hydrogenated catalytic biodiesel) is expected to address the cold start problem under low temperature of gasoline compression ignition due to its excellent ignition performance. Additionally, its spray behavior as the combustion boundary condition could have a direct impact on the characteristics of subsequent combustion. Therefore, the objective of this study is to reveal the effects of hydrogenated catalytic biodiesel/gasoline on the spray characteristics under various ambient conditions. As a significant index of spray characteristics, the spray penetration was achieved by applying Mie scattering methods under nonevaporation and evaporation conditions on a constant volume combustion chamber. In addition, the experimental results were compared against the calculated values of the models. As demonstrated by the results, a better spray performance can be achieved by the blended fuel than diesel and hydrogenated catalytic biodiesel. In respect of spray penetration, there is almost no difference among the three fuels under the ambient temperature of 323 K. Nevertheless, the blended fuel is lower than that of hydrogenated catalytic biodiesel and diesel when the ambient temperature is 434 K and 523 K. Moreover, the blended fuel is the first to reach the stable state, and the hydrogenated catalytic biodiesel is earlier than diesel for the spray penetration. Meanwhile, the spray model is identified as suitable for the blended fuel.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2056 ◽  
Author(s):  
Moo-Yeon Lee ◽  
Gee-Soo Lee ◽  
Chan-Jung Kim ◽  
Jae-Hyeong Seo ◽  
Ki-Hyun Kim

The aim of this study is to investigate the spray characteristics of diesel and gasoline under various ambient conditions. Ambient conditions were simulated, ranging from atmospheric conditions to high pressure and temperature conditions such as those inside a combustion chamber of an internal combustion engine. Spray tip penetration and spray cross-sectional area were calculated in liquid and vapor spray development. In addition, initial spray development and end of injection near nozzle were visualized microscopically, to study spray atomization characteristics. Three injection pressures of 50 MPa, 100 MPa, and 150 MPa were tested. The ambient temperature was varied from 300 K to 950 K, and the ambient density was maintained between 1 kg/m3 and 20 kg/m3. Gasoline and diesel exhibited similar liquid penetration and spray cross-sectional area at every ambient density condition under non-evaporation. As the ambient temperature increased, liquid penetration length and spray area of both fuels’ spray were shortened and decreased by fuel evaporation near the spray boundary. However, the two fuels were characterized by different slopes in the decrement trend of spray area as the ambient temperature increased. The decrement slope trend coincided considerably with the distillation curve characteristics of the two fuels. Vapor spray boundary of gasoline and diesel was particularly similar, despite the different amount of fuel evaporation. It was assumed that the outer spray boundary of gasoline and diesel is always similar when using the same injector and injection conditions. In microscopic spray visualization, gasoline spray displayed a more unstable and asymmetric spray shape, with more dispersed and distributed fuel ligaments during initial spray development. Large amounts of fuel vapor cloud were observed near the nozzle at the end of the injection process with gasoline. Some amounts of this vapor cloud were attributed to the evaporation of residual fuel in the nozzle sac.


Author(s):  
S.W. French ◽  
N.C. Benson ◽  
C. Davis-Scibienski

Previous SEM studies of liver cytoskeletal elements have encountered technical difficulties such as variable metal coating and heat damage which occurs during metal deposition. The majority of studies involving evaluation of the cell cytoskeleton have been limited to cells which could be isolated, maintained in culture as a monolayer and thus easily extracted. Detergent extraction of excised tissue by immersion has often been unsatisfactory beyond the depth of several cells. These disadvantages have been avoided in the present study. Whole C3H mouse livers were perfused in situ with 0.5% Triton X-100 in a modified Jahn's buffer including protease inhibitors. Perfusion was continued for 1 to 2 hours at ambient temperature. The liver was then perfused with a 2% buffered gluteraldehyde solution. Liver samples including spontaneous tumors were then maintained in buffered gluteraldehyde for 2 hours. Samples were processed for SEM and TEM using the modified thicarbohydrazide procedure of Malich and Wilson, cryofractured, and critical point dried (CPD). Some samples were mechanically fractured after CPD.


Author(s):  
S. Mahajan

The evolution of dislocation channels in irradiated metals during deformation can be envisaged to occur in three stages: (i) formation of embryonic cluster free regions, (ii) growth of these regions into microscopically observable channels and (iii) termination of their growth due to the accumulation of dislocation damage. The first two stages are particularly intriguing, and we have attempted to follow the early stages of channel formation in polycrystalline molybdenum, irradiated to 5×1019 n. cm−2 (E > 1 Mev) at the reactor ambient temperature (∼ 60°C), using transmission electron microscopy. The irradiated samples were strained, at room temperature, up to the macroscopic yield point.Figure 1 illustrates the early stages of channel formation. The observations suggest that the cluster free regions, such as A, B and C, form in isolated packets, which could subsequently link-up to evolve a channel.


Author(s):  
Robert C. Rau

Previous work has shown that post-irradiation annealing, at temperatures near 1100°C, produces resolvable dislocation loops in tungsten irradiated to fast (E > 1 MeV) neutron fluences of about 4 x 1019 n/cm2 or greater. To crystallographically characterize these loops, tilting experiments were carried out in the electron microscope on a polycrystalline specimen which had been irradiated to 1.5 × 1021 n/cm2 at reactor ambient temperature (∼ 70°C), and subseouently annealed for 315 hours at 1100°C. This treatment produced large loops averaging 1000 Å in diameter, as shown in the micrographs of Fig. 1. The orientation of this grain was near (001), and tilting was carried out about axes near [100], [10] and [110].


Author(s):  
J. J. Laidler

The presence of three-dimensional voids in quenched metals has long been suspected, and voids have indeed been observed directly in a number of metals. These include aluminum, platinum, and copper, silver and gold. Attempts at the production of observable quenched-in defects in nickel have been generally unsuccessful, so the present work was initiated in order to establish the conditions under which such defects may be formed.Electron beam zone-melted polycrystalline nickel foils, 99.997% pure, were quenched from 1420°C in an evacuated chamber into a bath containing a silicone diffusion pump fluid . The pressure in the chamber at the quenching temperature was less than 10-5 Torr . With an oil quench such as this, the cooling rate is approximately 5,000°C/second above 400°C; below 400°C, the cooling curve has a long tail. Therefore, the quenched specimens are aged in place for several seconds at a temperature which continuously approaches the ambient temperature of the system.


Sign in / Sign up

Export Citation Format

Share Document