Development and Testing of a Novel, Variable-Roughness Technique to Enhance, On Demand, Heat Transfer in a Single-Phase Heat Exchanger

2001 ◽  
Vol 8 (5) ◽  
pp. 341-352 ◽  
Author(s):  
Peter R. Champagne ◽  
Arthur E. Bergles
Author(s):  
M. M. Kabir ◽  
Sangsoo Lee

Abstract Recent leaps in heat dissipation make it difficult for typical heat exchangers to meet the requirements of the advanced applications even with the maximally obtainable heat transfer performance associated with a single-phase process. Especially high heat flux applications such as thermal management in microelectronics, advanced material processing, and nuclear fusion reactors require extreme heat transfer methods to overcome the current limits. In this study, a heat exchanger adopting simultaneously two-opposite, phase-change heat transfer processes (internal flow boiling and external condensation) was proposed and analytically investigated. The phase-change heat transfer analyses were conducted for internal flow boiling and external condensation at a test section and the heat transfer performances were compared with that of a system with an internal single-phase, liquid flow process. It is found that the proposed heat exchanger configuration with an internal flow boiling can substantially enhance the heat transfer performances and provide better methods to manage the temperature difference comparing to those with an internal single-phase heat transfer due to its significant increase in a heat transfer coefficients and constant temperatures during phase-change processes. Additionally, this study also explains the design for a test rig to evaluate and validate the results in detail. The test rig consists of an internal flow boiling loop with a test section, an external condensation loop, sensors, auxiliary monitoring parts, and controlling and data acquisition systems. Thermodynamic cycle, pressure drop, and heat transfer analyses were conducted to determine the conditions and the specifications of components and sensors for the test rig.


Author(s):  
Ki Wook Jung ◽  
Hyoungsoon Lee ◽  
Chirag Kharangate ◽  
Feng Zhou ◽  
Mehdi Asheghi ◽  
...  

Abstract High performance and economically viable thermal cooling solutions must be developed to reduce weight and volume, allowing for a wide-spread utilization of hybrid electric vehicles. The traditional embedded microchannel cooling heat sinks suffer from high pressure drop due to small channel dimensions and long flow paths in 2D-plane. Utilizing direct “embedded cooling” strategy in combination with top access 3D-manifold strategy reduces the pressure drop by nearly an order of magnitude. In addition, it provides more temperature uniformity across large area chips and it is less prone to flow instability in two-phase boiling heat transfer. Here, we present the experimental results for single-phase thermofluidic performance of an embedded silicon microchannel cold-plate bonded to a 3D manifold for heat fluxes up to 300 W/cm2 using single-phase R-245fa. The heat exchanger consists of a 52 mm2 heated area with 25 parallel 75 × 150 μm2 microchannels, where the fluid is distributed by a 3D-manifold with 4 micro-conduits of 700 × 250 μm2. Heat is applied to the silicon heat sink using electrical Joule-heating in a metal serpentine bridge and the heated surface temperature is monitored in real-time by Infra-red (IR) camera and electrical resistance thermometry. The experimental results for maximum and average temperatures of the chip, pressure drop, thermal resistance, average heat transfer coefficient for flow rates of 0.1, 0.2. 0.3 and 0.37 lit/min and heat fluxes from 25 to 300 W/cm2 are reported. The proposed Embedded Microchannels-3D Manifold Cooler, or EMMC, device is capable of removing 300 W/cm2 at maximum temperature 80 °C with pressure drop of less than 30 kPa, where the flow rate, inlet temperature and pressures are 0.37 lit/min, 25 °C and 350 kPa, respectively. The experimental uncertainties of the test results are estimated, and the uncertainties are the highest for heat fluxes < 50 W/cm2 due to difficulty in precisely measuring the fluid temperature at the inlet and outlet of the micro-cooler.


2016 ◽  
Vol 37 (2) ◽  
pp. 3-22 ◽  
Author(s):  
Pavan Kumar Konchada ◽  
Vinay Pv ◽  
Varaprasad Bhemuni

AbstractThe presence of nanoparticles in heat exchangers ascertained increment in heat transfer. The present work focuses on heat transfer in a longitudinal finned tube heat exchanger. Experimentation is done on longitudinal finned tube heat exchanger with pure water as working fluid and the outcome is compared numerically using computational fluid dynamics (CFD) package based on finite volume method for different flow rates. Further 0.8% volume fraction of aluminum oxide (Al2O3) nanofluid is considered on shell side. The simulated nanofluid analysis has been carried out using single phase approach in CFD by updating the user-defined functions and expressions with thermophysical properties of the selected nanofluid. These results are thereafter compared against the results obtained for pure water as shell side fluid. Entropy generated due to heat transfer and fluid flow is calculated for the nanofluid. Analysis of entropy generation is carried out using the Taguchi technique. Analysis of variance (ANOVA) results show that the inlet temperature on shell side has more pronounced effect on entropy generation.


Sign in / Sign up

Export Citation Format

Share Document