APPLICATION OF REFLECTED GRID METHOD FOR EXAMINATION OF SMALL SURFACE DEFORMATION OF MOVING FLUID

1993 ◽  
Vol 1 (3) ◽  
pp. 235-238
Author(s):  
V. I. Bojarintsev ◽  
N. G. Burago ◽  
A. K. Lednev ◽  
V. A. Frost
2012 ◽  
Vol 694 ◽  
pp. 352-370 ◽  
Author(s):  
T. E. Stokes ◽  
G. C. Hocking ◽  
L. K. Forbes

AbstractThe steady axisymmetric flow induced by a ring sink (or source) submerged in an unbounded inviscid fluid is computed and the resulting deformation of the free surface is obtained. Solutions are obtained analytically in the limit of small Froude number (and hence small surface deformation) and numerically for the full nonlinear problem. The small Froude number solutions are found to have the property that if the non-dimensional radius of the ring sink is less than $\rho = \sqrt{2} $, there is a central stagnation point on the surface surrounded by a dip which rises to the stagnation level in the far distance. However, as the radius of the ring sink increases beyond $\rho = \sqrt{2} $, a surface stagnation ring forms and moves outward as the ring sink radius increases. It is also shown that as the radius of the sink increases, the solutions in the vicinity of the ring sink/source change continuously from those due to a point sink/source ($\rho = 0$) to those due to a line sink/source ($\rho \ensuremath{\rightarrow} \infty $). These properties are confirmed by the numerical solutions to the full nonlinear equations for finite Froude numbers. At small values of the Froude number and sink or source radius, the nonlinear solutions look like the approximate solutions, but as the flow rate increases a limiting maximum Froude number solution with a secondary stagnation ring is obtained. At large values of sink or source radius, however, this ring does not form and there is no obvious physical reason for the limit on solutions. The maximum Froude numbers at which steady solutions exist for each radius are computed.


2014 ◽  
Vol 783-786 ◽  
pp. 1765-1769 ◽  
Author(s):  
Fumikazu Miyasaka ◽  
Gaku Yoshikawa ◽  
Shuhei Matsuzawa

The friction stir welding (FSW) is known as non-melting joining. It used widely in the field of industry. Numerical analysis models for FSW also have been developed. In these models, the most frequently used method is a grid method (finite element method or finite difference method). However it is difficult or troublesome to calculate the advective term both for momentum and temperature employing these methods. It is also difficult to calculate the big deformation of the material's free surface. Moreover, complex process is required to analyze the dissimilar joining with respect to dealing with substance transfer. In this paper, to avoid these difficulties, particle method is adopted for FSW simulation. In particle method, advective term, substance transfer, and surface deformation are calculated automatically mainly because that Lagrangian approach is used. To verify the effectiveness of this method, fluid motion around the tool is examined by particle trace. As a result, relations between the rotating speed of the tool and area of plastic flow is evaluated.


2009 ◽  
Vol 47 (4) ◽  
Author(s):  
A. Gudmundsson ◽  
L. S. Brenner

Field studies indicate that nearly all eruptions in volcanic edifices and rift zones are supplied with magma through fractures (dykes) that are opened by magmatic overpressure. While (inferred) dyke injections are frequent during unrest periods, volcanic eruptions are, in comparison, infrequent, suggesting that most dykes become arrested at certain depths in the crust, in agreement with field studies. The frequency of dyke arrest can be partly explained by the numerical models presented here which indicate that volcanic edifices and rift zones consisting of rocks of contrasting mechanical properties, such as soft pyroclastic layers and stiff lava flows, commonly develop local stress fields that encourage dyke arrest. During unrest, surface deformation studies are routinely used to infer the geometries of arrested dykes, and some models (using homogeneous, isotropic half-spaces) infer large grabens to be induced by such dykes. Our results, however, show that the dyke-tip tensile stresses are normally much greater than the induced surface stresses, making it difficult to explain how a dyke can induce surface stresses in excess of the tensile (or shear) strength while the same strength is not exceeded at the (arrested) dyke tip. Also, arrested dyke tips in eroded or active rift zones are normally not associated with dyke-induced grabens or normal faults, and some dykes arrested within a few metres of the surface do not generate faults or grabens. The numerical models show that abrupt changes in Young's moduli(stiffnesses), layers with relatively high dyke-normal compressive stresses (stress barriers), and weak horizontal contacts may make the dyke-induced surface tensile stresses too small for significant fault or graben formation to occur in rift zones or volcanic edifices. Also, these small surface stresses may have no simple relation to the dyke geometry or the depth to its tip. Thus, for a layered crust with weak contacts, straightforward inversion of surface geodetic data may lead to unreliable geometries of arrested dykes in active rift zones and volcanic edifices.


2014 ◽  
Vol 56 (6) ◽  
Author(s):  
Spyridon D. Mavroulis ◽  
Ioannis G. Fountoulis ◽  
Emmanuel N. Skourtsos ◽  
Efthymis L. Lekkas ◽  
Ioannis D. Papanikolaou

On June 8, 2008, a strike-slip earthquake (Mw=6.4) was generated NE of the Andravida town (NW Peloponnese, western Greece) due to the activation of the previously unknown western Achaia strike-slip fault zone (WAFZ). Extensive structural damage and earthquake environmental effects (EEE) were induced in the NW Peloponnese, offering the opportunity to test and compare the ESI 2007 and the EMS-98 intensity scales in a moderate strike-slip event. No primary EEE were induced, while secondary EEE including seismic fractures, liquefaction phenomena, slope movements and hydrological anomalies were widely observed covering an area of about 800 km<sup>2</sup>. The lack of primary effects and the relatively small surface deformation with respect to the earthquake magnitude is due to the thick Gavrovo flysch layer in the affected area that isolated and absorbed the subsurface deformation from the surface. According to the application of the EMS-98 scale, damage to masonry buildings ranged from grade 3 to 5, while damage in most of R/C buildings ranged from grade 1 to 3. A maximum ESI 2007 intensity VIII-IX is recorded, while the maximum EMS-98 intensity is IX. For all the sites where intensity VIII has been recorded the ESI 2007 and the EMS-98 agree, but for others the ESI 2007 intensities values are lower by one or two degrees than the corresponding EMS-98 ones, as it is clearly concluded from the comparison of the produced isoseismals. An exception to this rule is the Valmi village, where considerable structural damage occurs (IX<sub>EMS-98</sub>) along with the lack of significant EEE (V<sub>ESI 2007</sub>). This variability between the ESI 2007 and the EMS-98 intensity values is predominantly attributed to the vulnerability of old masonry buildings constructed with no seismic resistance design. Correlation of all existing data shows that the geological structure, the active tectonics, and the geotechnical characteristics of the alpine and post-alpine formations along with the construction type of buildings were of decisive importance in the damage and the EEE distribution.


2021 ◽  
Author(s):  
Saumik Dana ◽  
Xiaoxi Zhao ◽  
Birendra Jha

In an earlier work, we introduced the two-grid method for unstructured tetrahedra applied to staggered solution of coupled flow and poromechanics and demonstrated its accuracy for the benchmark Mandel’s problem. In this work, we employ the two-grid method to study surface deformation and fault stability in a field scale carbon storage project.


2017 ◽  
Vol 69 (6) ◽  
pp. 1016-1032 ◽  
Author(s):  
Rahul Kumar ◽  
Mohammad Sikandar Azam ◽  
Subrata Kumar Ghosh ◽  
Hasim Khan

Purpose The aim of this paper is to study the effect of deterministic roughness and small elastic deformation of surface on flow rates, load capacity and coefficient of friction in Rayleigh step bearing under thin film lubrication. Design/methodology/approach Reynolds equation, pressure-density relationship, pressure-viscosity relationship and film thickness equation are discretized using finite difference method. Progressive mesh densification (PMD) method is applied to solve the related equations iteratively. Findings The nature and shape of roughness play a significant role in pressure generation. It has been observed that square roughness dominates the pressure generation for all values of minimum film thickness. Deformation more than 100 nm in bounding surfaces influences the film formation and pressure distribution greatly. Divergent shapes of film thickness in step zone causes a delay of pressure growth and reduces the load capacity with decreasing film thickness. The optimum value of film thickness ratio and step ratios have been found out for the maximum load capacity and minimum coefficient of friction, which are notably influenced by elastic deformation of the surface. Practical implications It is expected that these findings will help in analysing the performance parameters of a Rayleigh step bearing under thin film lubrication more accurately. It will also help the designers, researchers and manufacturers of bearings. Originality/value Most of the previous studies have been limited to sinusoidal roughness and thick film lubrication in Rayleigh step bearing. Effect of small surface deformation due to generated pressure in thin film lubrication is significant, as it influences the performance parameters of the bearing. Different wave forms such as triangular, sawtooth, sinusoidal and square formed during finishing operations behaves differently in pressure generation. The analysis of combined effect of roughness and small surface deformation has been performed under thin film lubrication for Rayleigh step bearing using PMD as improved methods for direct iterative approach.


Vestnik MEI ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 101-108
Author(s):  
Anton Yu. Poroykov ◽  
◽  
Konstantin M. Lapitskiy ◽  

2013 ◽  
Vol 58 (2) ◽  
pp. 449-463 ◽  
Author(s):  
Mieczysław Żyła ◽  
Agnieszka Dudzińska ◽  
Janusz Cygankiewicz

Ethane constitutes an explosive gas. It most often accompanies methane realizing during exploitation and mining works. In this paper the results of ethane sorption have been discussed on three grain classes of six selected hard coal samples collected from active Polish coalmines. On the basis of obtained results, it has been stated that the tested hard coals prove differentiated sorption power with reference to ethane. Te extreme amount of ethane is sorbed by low carbonized hard coal from “Jaworzno” coalmine. This sort of coal shows great porosity, and great content of oxygen and moisture. The least amount of ethane is sorbed by hard coal from “Sośnica” coalmine. This sort of coal possesses relatively a great deal of ash contents. Together with the process of coal disintegration, the amount of sorbed ethane increases for all tested coal samples. Between tested coals there are three medium carbonized samples collected from “Pniówek”, “Chwałowice” “Zofiówka” coalmines which are characterized by small surface values counted according to model BET from nitrogen sorption isotherms determined at the temperature of 77.5 K. The samples of these three coals prove the highest, from between tested coals, increase of ethane sorption occurring together with their disintegration. These samples disintegrated to 0,063-0,075 mm grain class sorb ethane in the amount corresponding with the sorption quantity of low carbonized coal from “Jaworzno” coalmine in 0.5-0.7 mm grain class. It should be marked that the low carbonized samples collected from “Jaworzno” and Wesoła” coalmines possess large specific surface and great porosity and belong to coal group of “loose” spatial structure. Regarding profusion of sorbed ethane on disintegrated medium carbonized samples from “Pniówek”, “Zofiówka”, “Chwałowice” coalmines it can be supposed that in the process of coal disintegration, breaking their “compact’ structure occurs. Loosened structure of medium carbonized coals results in increasing accessibility of ethane particles to sorption centres both electron donors and electron acceptors which are present on hard coal surface. The surface sorption centre increase may result in formation a compact layer of ethane particles on coal surface. In the formed layer, not only the strengths of vertical binding of ethane particles with the coal surface appear but also the impact of horizontal strengths appears which forms a compact layer of sorbed ethane particles. The surface layer of ethane particles may lead to explosion.


Sign in / Sign up

Export Citation Format

Share Document