HIGH-SPEED OBSERVATIONS OF HIGHLY EROSIVE VORTEX CAVITATION USING IMAGE PROCESSING

1995 ◽  
Vol 2 (2) ◽  
pp. 161-172 ◽  
Author(s):  
Kohtaro Ohba ◽  
Hitoshi Soyama ◽  
Sho Takeda ◽  
Hikaru Inooka ◽  
Risaburo Oba
Keyword(s):  
2010 ◽  
Vol 30 (11) ◽  
pp. 2873-2875 ◽  
Author(s):  
Ming-kai ZHU ◽  
Zhen-hua GAO ◽  
Zhi-lei CHAI

2019 ◽  
Vol 13 (2) ◽  
pp. 174-180
Author(s):  
Poonam Sharma ◽  
Ashwani Kumar Dubey ◽  
Ayush Goyal

Background: With the growing demand of image processing and the use of Digital Signal Processors (DSP), the efficiency of the Multipliers and Accumulators has become a bottleneck to get through. We revised a few patents on an Application Specific Instruction Set Processor (ASIP), where the design considerations are proposed for application-specific computing in an efficient way to enhance the throughput. Objective: The study aims to develop and analyze a computationally efficient method to optimize the speed performance of MAC. Methods: The work presented here proposes the design of an Application Specific Instruction Set Processor, exploiting a Multiplier Accumulator integrated as the dedicated hardware. This MAC is optimized for high-speed performance and is the application-specific part of the processor; here it can be the DSP block of an image processor while a 16-bit Reduced Instruction Set Computer (RISC) processor core gives the flexibility to the design for any computing. The design was emulated on a Xilinx Field Programmable Gate Array (FPGA) and tested for various real-time computing. Results: The synthesis of the hardware logic on FPGA tools gave the operating frequencies of the legacy methods and the proposed method, the simulation of the logic verified the functionality. Conclusion: With the proposed method, a significant improvement of 16% increase in throughput has been observed for 256 steps iterations of multiplier and accumulators on an 8-bit sample data. Such an improvement can help in reducing the computation time in many digital signal processing applications where multiplication and addition are done iteratively.


1986 ◽  
Vol IM-35 (4) ◽  
pp. 596-605 ◽  
Author(s):  
Lawrence Bruce Hewitt ◽  
Leonard T. Bruton ◽  
Norman R. Bartley

2014 ◽  
Vol 1048 ◽  
pp. 173-177 ◽  
Author(s):  
Ying Mei Wang ◽  
Yan Mei Li ◽  
Wan Yue Hu

Fabric shape style is one of the most important conditions in textile appearance evaluation, and also the main factor influences customer purchasing psychology. At first, the previous fabric shape style evaluation methods are classified and summarized, measurement and evaluation method discussed from tactic and dynamic aspects. Then, companied with computer vision principle, a non-contact method for measuring fabric shape style was put forward. In this method, two high-speed CCD cameras were used to capture fabric movement dynamically, fabric sequences image were obtained in this process. Used the image processing technology include pretreatment and feature point matching to get 3D motion parameters, it can provide data supports for shape style evaluation.


Author(s):  
K. Rocha ◽  
A. Venkatachalam ◽  
T. Bose ◽  
R.L. Haupt

1985 ◽  
Author(s):  
K. Kiyohashi ◽  
T. Eguchi ◽  
R. Tate ◽  
T. Kamimoto

2020 ◽  
Author(s):  
Jun Ki Kim ◽  
Youngkyu Kim ◽  
Jungmin Oh ◽  
Seung-Ho Choi ◽  
Ahra Jung ◽  
...  

BACKGROUND Recently, high-speed digital imaging (HSDI), especially HSD endoscopic imaging is being routinely used for the diagnosis of vocal fold disorders. However, high-speed digital endoscopic imaging devices are usually large and costly, which limits access by patients in underdeveloped countries and in regions with inadequate medical infrastructure. Modern smartphones have sufficient functionality to process the complex calculations that are required for processing high-resolution images and videos with a high frame rate. Recently, several attempts have been made to integrate medical endoscopes with smartphones to make them more accessible to underdeveloped countries. OBJECTIVE To develop a smartphone adaptor for endoscopes to reduce the cost of devices, and to demonstrate the possibility of high-speed vocal cord imaging using the high-speed imaging functions of a high-performance smartphone camera. METHODS A customized smartphone adaptor was designed for clinical endoscopy using selective laser melting (SLM)-based 3D printing. Existing laryngoscope was attached to the smartphone adaptor to acquire high-speed vocal cord endoscopic images. Only existing basic functions of the smartphone camera were used for HSDI of the vocal folds. For image processing, segmented glottal areas were calculated from whole HSDI frames, and characteristics such as volume, shape and longitudinal edge length were analyzed. RESULTS High-speed digital smartphone imaging with the smartphone-endoscope adaptor could achieve 940 frames per second, and was used to image the vocal folds of five volunteers. The image processing and analytics demonstrated successful calculation of relevant diagnostic variables from the acquired images. CONCLUSIONS A smartphone-based HSDI endoscope system can function as a point-of-care clinical diagnostic device. Furthermore, this system is suitable for use as an accessible diagnostic method in underdeveloped areas with inadequate medical service infrastructure.


2002 ◽  
Vol 38 (12) ◽  
pp. 590 ◽  
Author(s):  
H. Kawai ◽  
A. Baba ◽  
M. Shibata ◽  
Y. Takeuchi ◽  
T. Komuro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document