scholarly journals A portable smartphone-based laryngoscope system for high-speed vocal cord imaging of patients with throat disorders (Preprint)

2020 ◽  
Author(s):  
Jun Ki Kim ◽  
Youngkyu Kim ◽  
Jungmin Oh ◽  
Seung-Ho Choi ◽  
Ahra Jung ◽  
...  

BACKGROUND Recently, high-speed digital imaging (HSDI), especially HSD endoscopic imaging is being routinely used for the diagnosis of vocal fold disorders. However, high-speed digital endoscopic imaging devices are usually large and costly, which limits access by patients in underdeveloped countries and in regions with inadequate medical infrastructure. Modern smartphones have sufficient functionality to process the complex calculations that are required for processing high-resolution images and videos with a high frame rate. Recently, several attempts have been made to integrate medical endoscopes with smartphones to make them more accessible to underdeveloped countries. OBJECTIVE To develop a smartphone adaptor for endoscopes to reduce the cost of devices, and to demonstrate the possibility of high-speed vocal cord imaging using the high-speed imaging functions of a high-performance smartphone camera. METHODS A customized smartphone adaptor was designed for clinical endoscopy using selective laser melting (SLM)-based 3D printing. Existing laryngoscope was attached to the smartphone adaptor to acquire high-speed vocal cord endoscopic images. Only existing basic functions of the smartphone camera were used for HSDI of the vocal folds. For image processing, segmented glottal areas were calculated from whole HSDI frames, and characteristics such as volume, shape and longitudinal edge length were analyzed. RESULTS High-speed digital smartphone imaging with the smartphone-endoscope adaptor could achieve 940 frames per second, and was used to image the vocal folds of five volunteers. The image processing and analytics demonstrated successful calculation of relevant diagnostic variables from the acquired images. CONCLUSIONS A smartphone-based HSDI endoscope system can function as a point-of-care clinical diagnostic device. Furthermore, this system is suitable for use as an accessible diagnostic method in underdeveloped areas with inadequate medical service infrastructure.

2017 ◽  
Vol 09 (05) ◽  
pp. 1750064 ◽  
Author(s):  
A. Van Hirtum ◽  
X. Pelorson

Experiments on mechanical deformable vocal folds replicas are important in physical studies of human voice production to understand the underlying fluid–structure interaction. At current date, most experiments are performed for constant initial conditions with respect to structural as well as geometrical features. Varying those conditions requires manual intervention, which might affect reproducibility and hence the quality of experimental results. In this work, a setup is described which allows setting elastic and geometrical initial conditions in an automated way for a deformable vocal fold replica. High-speed imaging is integrated in the setup in order to decorrelate elastic and geometrical features. This way, reproducible, accurate and systematic measurements can be performed for prescribed initial conditions of glottal area, mean upstream pressure and vocal fold elasticity. Moreover, quantification of geometrical features during auto-oscillation is shown to contribute to the experimental characterization and understanding.


2018 ◽  
Vol 183 ◽  
pp. 02043 ◽  
Author(s):  
Bratislav Lukić ◽  
Dominique Saletti ◽  
Pascal Forquin

This paper presents the measurement results of the dynamic tensile strength of a High Performance Concrete (HPC) obtained using full-field identification method. An ultra-high speed imaging system and the virtual fields method were used to obtain this information. Furthermore the measurement results were compared with the local point-wise measurement to validate the data pressing. The obtained spall strength was found to be consistently 20% lower than the one obtained when the Novikov formula is used.


Author(s):  
Michael Döllinger ◽  
Franziska Gröhn ◽  
David A. Berry ◽  
Ulrich Eysholdt ◽  
Georg Luegmair

Purpose Previous studies have confirmed the influence of dehydration and an altered mucus (e.g., due to pathologies) on phonation. However, the underlying reasons for these influences are not fully understood. This study was a preliminary inquiry into the influences of mucus architecture and concentration on vocal fold oscillation. Method Two excised human larynges were investigated in an in vitro setup. The oscillations of the vocal folds at various airflow volume rates were recorded through the use of high-speed imaging. Engineered mucus containing polymers (interconnected polymers and linear polymers) was applied to the vocal folds. From the high-speed footage, glottal parameters were extracted through the use of objective methods and were compared to a gold standard (physiological saline solution). Results Variations were found for all applications of mucus. Fundamental frequency dropped and the oscillatory behavior (speed quotient [SQ], closing quotient [CQ]) changed for both larynges. The 2 applied mucus architectures displayed different effects on the larynges. The interconnected polymer displayed clear low-pass filter characteristics not found for the linear polymer. Increase of polymer concentration affected parameters to a certain point. Conclusion The data confirm results found in previous studies. Furthermore, the different effects—comparing architecture and concentration—suggest that, in the future, synthetic mucus can be designed to improve phonation.


2003 ◽  
Author(s):  
Adrian M. Holland ◽  
Colin P. Garner

This paper discusses the production and use of laser-machined surfaces that provide enhanced nucleate boiling and heat transfer characteristics. The surface features of heated plates are known to have a significant effect on nucleate boiling heat transfer and bubble growth dynamics. Nucleate boiling starts from discrete bubbles that form on surface imperfections, such as cavities or scratches. The gas or vapours trapped in these imperfections serve as nuclei for the bubbles. After inception, the bubbles grow to a certain size and depart from the surface. In this work, special heated surfaces were manufactured by laser machining cavities into polished aluminium plates. This was accomplished with a Nd:YAG laser system, which allowed drilling of cavities of a known diameter. The size range of cavities was 20 to 250 micrometers. The resulting nucleate pool boiling was analysed using a novel high-speed imaging system comprising an infrared laser and high resolution CCD camera. This system was operated up to a 2 kHz frame rate and digital image processing allowed bubbles to be analysed statistically in terms of departure diameter, departure frequency, growth rate, shape and velocity. Data was obtained for heat fluxes up to 60 kW.m−2. Bubble measurements were obtained working with water at atmospheric pressure. The surface cavity diameters were selected to control the temperature at which vapour bubbles started to grow on the surface. The selected size and spacing of the cavities was also explored to provide optimal heat transfer.


Author(s):  
Zhipeng Lou ◽  
Junshi Wang ◽  
James J. Daniero ◽  
Haibo Dong ◽  
Jinxiang Xi

Abstract In this paper, a numerical approach combined with experiments is employed to characterize the airflow through the vocal cord. Rabbits are used to perform in vivo magnetic resonance imaging (MRI) experiments and the MRI scan data are directly imposed for the three-dimensional (3D) reconstruction of a 3D high-fidelity model. The vibration modes are observed via the in vivo high-speed videoendoscopy (HSVM) technique, and the time-dependent glottal height is evaluated dynamically for the validation of the 3D reconstruction model. 72 sets of rabbit in vivo high-speed recordings are evaluated to achieve the most common vibration mode. The reconstruction is mainly based on MRI data and the HSVM records are supporting and validate the 3D model. A sharp-interface immersed-boundary-method (IBM)-based compressible flow solver is employed to compute the airflow. The primary purpose of the computational effort is to characterize the influence of the vocal folds that applied to the airflow and the airflow-induced phonation. The vocal fold kinematics and the vibration modes are quantified and the vortex structures are analyzed under the influence of vocal folds. The results have shown significant effects of the vocal fold height on the vortex structure, vorticity and velocity. The reconstructed 3D model from this work helps to bring insight into further understanding of the rabbit phonation mechanism. The results provide potential improvement for diagnosis of human vocal fold dysfunction and phonation disorder.


1999 ◽  
Vol 105 (2) ◽  
pp. 1304-1304 ◽  
Author(s):  
David A. Berry ◽  
Ingo R. Titze ◽  
Hanspeter Herzel

2019 ◽  
Vol 5 (4) ◽  
pp. eaaw0683 ◽  
Author(s):  
Hongqiang Ma ◽  
Jianquan Xu ◽  
Yang Liu

High-throughput nanoscopy becomes increasingly important for unraveling complex biological processes from a large heterogeneous cell population at a nanoscale resolution. High-density emitter localization combined with a large field of view and fast imaging frame rate is commonly used to achieve a high imaging throughput, but the image processing speed and the presence of heterogeneous background in the dense emitter scenario remain a bottleneck. Here, we present a simple non-iterative approach, referred to as WindSTORM, to achieve high-speed high-density emitter localization with robust performance for various image characteristics. We demonstrate that WindSTORM improves the computation speed by two orders of magnitude on CPU and three orders of magnitude upon GPU acceleration to realize online image processing, without compromising localization accuracy. Further, WindSTORM is highly robust to maximize the localization accuracy and minimize the image artifacts in the presence of nonuniform background. WindSTORM paves the way for next generation high-throughput nanoscopy.


Author(s):  
Samee Maharjan ◽  
Dag Bjerketvedt ◽  
Ola Marius Lysaker

Abstract This paper presents a framework for processing high-speed videos recorded during gas experiments in a shock tube. The main objective is to study boundary layer interactions of reflected shock waves in an automated way, based on image processing. The shock wave propagation was recorded at a frame rate of 500,000 frames per second with a Kirana high-speed camera. Each high-speed video consists of 180 frames, with image size [$$768 \times 924$$ 768 × 924 ] pixels. An image processing framework was designed to track the wave front in each image and thereby estimate: (a) the shock position; (b) position of triple point; and (c) shock angle. The estimated shock position and shock angle were then used as input for calculating the pressure exerted by the shock. To validate our results, the calculated pressure was compared with recordings from pressure transducers. With the proposed framework, we were able to identify and study shock wave properties that occurred within less than $$300\, \upmu \hbox {sec}$$ 300 μ sec and to track evolveness over a distance of 100 mm. Our findings show that processing of high-speed videos can enrich, and give detailed insight, to the observations in the shock experiments.


2018 ◽  
Vol 8 (12) ◽  
pp. 2666 ◽  
Author(s):  
Patrick Schlegel ◽  
Marion Semmler ◽  
Melda Kunduk ◽  
Michael Döllinger ◽  
Christopher Bohr ◽  
...  

Laryngeal high-speed videoendoscopy (HSV) allows objective quantification of vocal fold vibratory characteristics. However, it is unknown how the analyzed sequence length affects some of the computed parameters. To examine if varying sequence lengths influence parameter calculation, 20 HSV recordings of healthy females during sustained phonation were investigated. The clinical prevalent Photron Fastcam MC2 camera with a frame rate of 4000 fps and a spatial resolution of 512 × 256 pixels was used to collect HSV data. The glottal area waveform (GAW), describing the increase and decrease of the area between the vocal folds during phonation, was extracted. Based on the GAW, 16 perturbation parameters were computed for sequences of 5, 10, 20, 50 and 100 consecutive cycles. Statistical analysis was performed using SPSS Statistics, version 21. Only three parameters (18.8%) were statistically significantly influenced by changing sequence lengths. Of these parameters, one changed until 10 cycles were reached, one until 20 cycles were reached and one, namely Amplitude Variability Index (AVI), changed between almost all groups of different sequence lengths. Moreover, visually observable, but not statistically significant, changes within parameters were observed. These changes were often most prominent between shorter sequence lengths. Hence, we suggest using a minimum sequence length of at least 20 cycles and discarding the parameter AVI.


Sign in / Sign up

Export Citation Format

Share Document