scholarly journals Uniaxial tensile behavior of aligned steel fibre reinforced cementitious composites

2019 ◽  
Vol 52 (4) ◽  
Author(s):  
Longbang Qing ◽  
Kelai Yu ◽  
Ru Mu ◽  
John P. Forth
2016 ◽  
Vol 846 ◽  
pp. 139-144
Author(s):  
He Tian ◽  
Yi Xia Zhang ◽  
Chun Hui Yang

In this paper, a new numerical model is developed to model the tensile behavior of the cementitious composites reinforced with hybrid bagasse fibres and steel fibres based on the extended finite element method. The numerical model considers random fibre distribution, which is generated automatically, and the cohesive behavior, which represents the bonding between fibres and the matrix. The cementitious matrix is modeled using extended finite element method. The developed numerical model is implemented in commercial software ABAQUS and the computed results are compared with the corresponding experimental results for numerical validation. It is found that the tensile behavior of the composites predicted from the new numerical model is consistent with that obtained from experimental study, and that the developed numerical model can accurately predict the uniaxial tensile behavior, including the post-cracking behavior of fibre reinforced cementitious composites.


Fibers ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 67 ◽  
Author(s):  
Manish Roy ◽  
Corey Hollmann ◽  
Kay Wille

This paper studied the influence of fiber volume fraction ( V f ), fiber orientation, and type of reinforcement bar (rebar) on the uniaxial tensile behavior of rebar-reinforced strain-hardening ultra-high performance concrete (UHPC). It was observed that the tensile strength increased with the increase in V f . When V f was kept constant at 1%, rebar-reinforced UHPC with fibers aligned with the load direction registered the highest strength and that with fibers oriented perpendicular to the load direction recorded the lowest strength. The strength of the composite with random fibers laid in between. Moreover, the strength, as well as the ductility, increased when the normal strength grade 60 rebars embedded in UHPC were replaced with high strength grade 100 rebars with all other conditions remaining unchanged. In addition, this paper discusses the potential of sudden failure of rebar-reinforced strain hardening UHPC and it is suggested that the composite attains a minimum strain of 1% at the peak stress to enable the members to have sufficient ductility.


2020 ◽  
Vol 131 ◽  
pp. 105324 ◽  
Author(s):  
S.C. Wu ◽  
C.H. Li ◽  
Y. Luo ◽  
H.O. Zhang ◽  
G.Z. Kang

2019 ◽  
Vol 217 (1-2) ◽  
pp. 105-125 ◽  
Author(s):  
Bora Pulatsu ◽  
Ece Erdogmus ◽  
Paulo B. Lourenço ◽  
Romain Quey

Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 374 ◽  
Author(s):  
Fen Zhou ◽  
Huanhui Liu ◽  
Yunxing Du ◽  
Lingling Liu ◽  
Deju Zhu ◽  
...  

This paper investigates the effects of the reinforcement ratio, volume fraction of steel fibers, and prestressing on the uniaxial tensile behavior of carbon textile reinforced mortar (CTRM) through uniaxial tensile tests. The results show that the tensile strength of CTRM specimens increases with the reinforcement ratio, however the textile–matrix bond strength becomes weaker and debonding can occur. Short steel fibers are able to improve the mechanical properties of the entire CTRM composite and provide additional “shear resistant ability” to enhance the textile– matrix bond strength, resulting in finer cracks with smaller spacing and width. Investigations into the fracture surfaces using an optical microscope clarify these inferences. Increases in first-crack stress and tensile strength are also observed in prestressed TRM specimens. In this study, the combination of 1% steel fibers and prestressing at 15% of the ultimate tensile strength of two-layer textiles is found to be the optimum configuration, producing the highest first-crack stress and tensile strength and the most reasonable multi-cracking pattern.


Sign in / Sign up

Export Citation Format

Share Document