A unified compaction curve for raw earth material based on both static and dynamic compaction tests

2021 ◽  
Vol 54 (1) ◽  
Author(s):  
Longfei Xu ◽  
Henry Wong ◽  
Antonin Fabbri ◽  
Florian Champiré ◽  
Denis Branque
2021 ◽  
Vol 9 (08) ◽  
pp. 768-780
Author(s):  
Cherif Bishweka ◽  
◽  
Marcelline Blanche Manjia ◽  
Francois Ngapgue ◽  
Chrispin Pettang ◽  
...  

Soil is a widespread natural resource. It comes from the degradation of the mother rock, following the phenomenon of climatic and chemical erosion. Therefore, all soils have very different characteristics depending on their origin [1,2]. Today it is estimated that more than one third of the worlds population lives in earthen housing [3]. In view of the advantages offered by the earth material, several developing countries have adopted the raw earth construction in order to face the housing crisis that is intensifying nowadays. Among the advantages of raw earth, we can highlight the low energy required for its implementation, its aesthetic qualities and good thermal inertia, which allows a cool habitat in summer and retains heat in winter. But the problem with earthen constructions is that they suffer from a lack of resistance, systematic cracking due to shrinkage and problems related to their sensitivity to water [4]. From ancient times to the present day, man has sought to avoid the disadvantages of the earth material, using several means of stabilization to improve its performance and its sensitivity to water, which has given rise to several earth products: adobe, adobe, cob, compressed earth block (CEB) and others. Stabilizing the earth is to give it the properties reversible against physical stresses [5], it is currently confirmed that the stabilization of CEB by binders and bitumen improves their mechanical resistance and insensitivity to water [6]. Thus, scientific studies have been conducted on the stabilization of raw earth by mineral binders (cement and lime) for the most part [7] and by fibers (animal, vegetable and synthetic). However, the use of these mineral binders in high proportions may call into question the ecological character of the material [8]. The knowledge of the physical characteristics of lateritic soils is very important for their better use in the manufacture of compressed and stabilized earth blocks. Some social strata for the manufacture of CEB use lateritic soils without control of their physical characteristics, which leads to consequences such as progressive crumbling of walls, cracks, poor performance of plasters, and discouragement of the use of the said technology. In this study we intend to compile the most reliable experimental data on the physical properties of natural earth and the mechanical properties of CEB. We will take inventory of the performances determined in previous works by several research teams regarding the characterization and stabilization of lateritic soils to be used in the manufacture of CEB. We will give an overview of the state of knowledge concerning the different properties (physical, mechanical and hygrometric properties). Finally, a literature review will also give some orientations for future scientific research.


1983 ◽  
Author(s):  
H. W. Sandusky ◽  
R. R. Bernecker ◽  
Jr Clairmont ◽  
A. R.
Keyword(s):  

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 325
Author(s):  
Giada Giuffrida ◽  
Maurizio Detommaso ◽  
Francesco Nocera ◽  
Rosa Caponetto

The renewed attention paid to raw earth construction in recent decades is linked to its undoubted sustainability, cost-effectiveness, and low embodied energy. In Italy, the use of raw earth as a construction material is limited by the lack of a technical reference standard and is penalised by the current energy legislation for its massive behaviour. Research experiences, especially transoceanic, on highly performative contemporary buildings made with natural materials show that raw earth can be used, together with different types of reinforcements, to create safe, earthquake-resistant, and thermally efficient buildings. On the basis of experimental data of an innovative fibre-reinforced rammed earth material, energy analyses are developed on a rammed earth building designed for a Mediterranean climate. The paper focuses on the influences that different design solutions, inspired by traditional bioclimatic strategies, and various optimised wall constructions have in the improvement of the energy performance of the abovementioned building. These considerations are furthermore compared with different design criteria aiming at minimising embodied carbon in base material choice, costs, and discomfort hours. Results have shown the effectiveness of using the combination of massive rammed earth walls, night cross ventilation, and overhangs for the reduction of energy demand for space cooling and the improvement of wellbeing. Finally, the parametric analysis of thermal insulation has highlighted the economic, environmental, and thermophysical optimal solutions for the rammed earth envelope.


2021 ◽  
Vol 13 (3) ◽  
pp. 1364
Author(s):  
Michele La Noce ◽  
Alessandro Lo Faro ◽  
Gaetano Sciuto

Clay has a low environmental impact and can develop into many different products. The research presents two different case studies. In the first, the clay is the binder of raw earth doughs in order to produce clay-bricks. We investigate the effects of natural fibrous reinforcements (rice straws and basalt fibers) in four different mixtures. From the comparison with a mix without reinforcements, it is possible to affirm that the 0.40% of basalt fibers reduce the shrinkage by about 25% and increase the compressive strength by about 30%. Future studies will focus on identifying the fibrous effects on tensile strength and elastic modulus, as well as the optimal percentage of fibers. In the second study, the clay, in form of brick powder (“cocciopesto”), gives high alkaline resistance and breathability performance, as well as rendering and color to the plaster. The latter does not have artificial additives. The plaster respects the cultural instance of the original building. The research underlines how the use of a local (and traditional) material such as clay can be a promoter of sustainability in the contemporary building sector. Future studies must investigate further possible uses of clay as well as a proper regulatory framework.


2012 ◽  
Vol 170-173 ◽  
pp. 706-709
Author(s):  
Zhao Lin Jia ◽  
Shu Wang Yan ◽  
Zhi Liang Huo

By means of laboratory tests and theoretical calculation, the physical, mechanical properties and compaction mechanism of the wind-blown sand are studied to deal with the problem of how to use the wind-blown sand as roadbed materials. It is revealed that water content doesn’t affect the compressibility and the shear strength of the wind-blown sand obviously and the wind-blown sand can be compacted both in dry and wet conditions. The compaction curve of the ordinary fine sand is consistent with that of wind-blown sand and the main factors affecting the compaction properties are the grain composition, water content and compaction work.


Author(s):  
M. W. Bo ◽  
Y. M. Na ◽  
A. Arulrajah ◽  
M. F. Chang

2015 ◽  
Vol 75 ◽  
pp. 1238-1243 ◽  
Author(s):  
Elena Denisova ◽  
Ludmila Kuzovnikova ◽  
Rauf Iskhakov ◽  
Aleksandr Kuzovnikov ◽  
Anatoly Lepeshev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document