scholarly journals The influence of calcium sulfate content on the hydration of belite-calcium sulfoaluminate cements with different clinker phase compositions

2021 ◽  
Vol 54 (6) ◽  
Author(s):  
Maruša Mrak ◽  
Frank Winnefeld ◽  
Barbara Lothenbach ◽  
Sabina Dolenec

AbstractThe influence of different amounts of gypsum on the hydration of a belite-rich and a ye'elimite-rich belite-calcium sulfoaluminate clinker (BCSA) was investigated. The hydration kinetics, phase assemblages and compressive strength development of cements prepared using ye’elimite/ calcium sulfate molar ratios of 1, 1.5 and 2 were studied. Besides ettringite and monosulfate, aluminium hydroxide, strätlingite, C−S−H, iron-containing siliceous hydrogarnet and hydrotalcite were present as hydration products. Increasing the amount of gypsum increased the ratio of ettringite to monosulfate formed in the cement paste, lowered the amount of pore solution, delayed the dissolution of belite and ferrite, decreased the formation of strätlingite and, in the case of the ye’elimite-rich BCSA, led to an increase in compressive strength. Increased amounts of belite in the clinker led to the formation of higher quantities of C–S–H, at the expense of strätlingite and a lower compressive strength, as belite has a lower degree of reaction than ye’elimite and due to the formation of more C–S–H and strätlingite compared to the more space-filling ettringite. The thermodynamic model established for BCSA cement hydration agrees well with the experimental data. Compressive strength directly correlated with bound water from thermogravimetric analyses and inversely correlated with the porosity calculated from thermodynamic modelling.

2017 ◽  
Vol 727 ◽  
pp. 1067-1073 ◽  
Author(s):  
Wu Yao ◽  
Qiao Ling ◽  
Meng Xue Wu

Cement clinker with low CO2 emission was prepared in laboratory, which mainly consist of belite (C2S), calcium sulfoaluminate (C4A3S), and ferrite (C4AF). The mineral composition of clinker was optimized for better compressive strength development. The chemical and physical properties of this prepared cement were characterized through X-ray diffraction (XRD), back scattered electron-scanning electron microscopy (BSE-SEM) and differential thermal analysis (DTA). The results reveal that C4A3S governs most of the compressive strength at early ages, while C2S contributes to the later strength development. C4AF is in liquid when fired to 1300°C, beneficial to the mass transfer but causing high crystallinity of C2S when excessive. Finally the results of experiments suggest that the optimal composition of clinker is 50wt. % C2S, 40wt. % C4A3S and 10wt. % C4AF.


2019 ◽  
Vol 4 ◽  
pp. 81-88 ◽  
Author(s):  
Samuel Adu-Amankwah ◽  
Susan A Bernal Lopez ◽  
Leon Black

The quest for sustainable alternatives to Portland cement has led to the exploration of a range of materials or their combinations, often with the aim of exploiting synergies in reactions or particle packing to maximize performance. Simultaneous optimization of both presents a viable option to increase the efficiency of cementitious materials. The objective of this study was to evaluate the effect of varying the fineness of the constituents in ternary blends of CEM I – granulated ground blast furnace slag (GGBS) - limestone on hydration kinetics and strength development. Eight (8) ternary cement mixes were tested at 0.5 water/binder (w/b) ratio. Hydration was followed by isothermal conduction calorimetry and setting time. In addition, X-ray powder diffraction, thermogravimetric analysis and compressive strength development up to 180 days of curing were assessed. The efficiency associated with changing the fineness of each component was evaluated in terms of the net heat of reaction and compressive strength. The results show that fine CEM I is critical for hydration at early age, and this is reflected in the compressive strength accordingly. The benefits associated with finer GGBS and similarly limestone depend on the fineness of the other constituents in the blend. Optimization of these should consider the inter-dependencies in terms of kinetics and microstructure development.


2020 ◽  
Vol 1 ◽  
Author(s):  
Mohammed A. Hefni

Abstract The use of natural pozzolans in concrete applications is gaining more attention because of the associated environmental, economic, and technical benefits. In this study, reference cemented mine backfill samples were prepared using Portland cement, and experimental samples were prepared by partially replacing Portland cement with 10 or 20 wt.% fly ash as a byproduct (artificial) pozzolan or pumice as a natural pozzolan. Samples were cured for 7, 14, and 28 days to investigate uniaxial compressive strength development. Backfill samples containing 10 wt.% pumice had almost a similar compressive strength as reference samples. There is strong potential for pumice to be used in cemented backfill to minimize costs, improve backfill properties, and promote the sustainability of the mining industry.


Sign in / Sign up

Export Citation Format

Share Document