scholarly journals Studies on the Salt Tolerance in Korean Rice Cultivars. I. Mechanism of salt tolerance in dry matter production and leaf photosynthesis.

1995 ◽  
Vol 64 (3) ◽  
pp. 475-482 ◽  
Author(s):  
Dong-Ha CHO ◽  
Haruto SASAKI ◽  
Ryuichi ISHII
2002 ◽  
Vol 71 (1) ◽  
pp. 28-35 ◽  
Author(s):  
Yoshiharu WADA ◽  
San-Iku YUN ◽  
Hiroki SASAKI ◽  
Tadanobu MAEDA ◽  
Kunio MIURA ◽  
...  

Author(s):  
G.V. Venkataravana Nayaka ◽  
G. Prabhakara Reddy ◽  
R. Mahender Kumar

Background: Growth and yield characteristics of genotypes depend on genetic and environmental factors. Among the different production factors, varietal selection at any location plays an important role. Proper crop management depends on the growth characteristics of various varieties to get maximum benefit from new genetic material. Among the different water- saving irrigation methods in rice, the most widely adopted is alternate wetting and drying (AWD). Many of the rice cultivars vary in their performance under different systems of cultivation.Methods: A field experiment was conducted on a clay loam soil at Indian Institute of Rice Research (IIRR) Rajendranagar, Hyderabad, Telangana during the kharif seasons of 2017 and 2018. to study the “productivity and water use efficiency of rice cultivars under different irrigation regimes and systems of cultivation” The treatments consisted of two irrigation regimes Alternate wetting and drying and Saturation as main plot treatments, three establishment methods System of Rice Intensification (SRI), Drum Seeding (DS) and Normal transplanting (NTP) as sub plot treatments and four Cultivars namely DRR Dhan 42, DRR Dhan 43, MTU-1010 and NLR-34449 as sub-sub plot treatments summing up to 24 treatment combinations laid out in split-split plot design with three replications.Result: At 60, 90 DAS/DAT and harvest significantly dry matter production (DMP) was recorded with DRR Dhan 43 cultivar (607, 4320 and 11548 kg ha-1 respectively in pooled means of both 2017 and 2018) than other cultivars. Whereas MTU-1010 and NLR-34449 recorded on par dry matter production values at all the crop growth stages during both the years of study. However, DRR Dhan 42 produced the lowest dry matter production compared to other genotypes. DRR Dhan 43 recorded higher dry matter accumulation (g m-2) in root, stem and leaves at all the crop growth stages, during both the years of the study over other cultivars. Alternative wetting and drying method of irrigation recorded significantly higher DMP at all the growth stages of rice (60, 90 DAS/DAT and at harvest) except at 30 DAS/DAT during both 2017 and 2018 as compared to saturation. SRI recorded significantly higher DMP as compared to normal transplanting; however, it was comparably at par with drum seeding at all the growth stages.


2007 ◽  
Vol 58 (3) ◽  
pp. 225 ◽  
Author(s):  
M. E. Rogers

The response of 4 temperate grass species (Lolium perenne cv. Victorian, Thinopyrum ponticum cv. Tyrell, Austrodanthonia richardsonii cv. Taranna, A. bipartita cv. Bunderra) to saline irrigated conditions was evaluated over 4 seasons at Tatura in northern Victoria. This experiment followed earlier research where the salt tolerance of ~20 species of grasses was evaluated in the greenhouse. Field plots were established under non-saline conditions and were irrigated with saline water at 1.6, 2.5, and 4.5 dS/m. Measurements made on these plots included dry-matter production, tissue ion (Na+, Cl–, K+, Mg2+, Ca2+) concentrations, in vitro dry-matter digestibility, root distribution, and soil chemistry. Soil salinity (EC1 : 5) and sodicity (SAR1 : 5) levels peaked at 0.30–0.60 m depth and reached 1.3 dS/m and 9.8, respectively, for the highest saline irrigation treatment. Cumulative plant dry-matter production was lower in T. ponticum compared with the Austrodanthonia species and L. perenne at all salinity levels, but in relative terms there was no difference in the salt tolerance among any of the 4 species (the reduction in dry weight at 4.5 dS/m was 10–15% for all species). Leaf tissue concentrations of Na+ and Cl– were significantly lower in A. richardsonii and A. bipartita compared with T. ponticum and L. perenne, and in vitro dry-matter digestibility tended to be greater in L. perenne under saline conditions than in the other 3 species. This research suggests that the 2 native Austrodanthonia species can be grown under moderately saline conditions—either under saline irrigation or in a dryland discharge area—in environments where perennial ryegrass may also be grown.


1970 ◽  
Vol 34 (2) ◽  
pp. 313-322 ◽  
Author(s):  
MA Razzaque ◽  
MM Haque ◽  
MA Hamid ◽  
QA Khaliq ◽  
ARM Solaiman

A pot experiment was conducted at Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur during the year 2003 to find out the dry matter production and yield of rice cultivars under different nitrogen levels and growing conditions. Thirty-day old single seedlings were transplanted in pot and were placed in 3 growing conditions, such as i) Open top chamber (OTC) with elevated CO2 (570 ± 50 ppm), ii) OTC with ambient CO2 (360 ± 50 ppm), and iii) open field condition. The three nitrogen levels used were, i) control, ii) optimum dose, and iii) supra optimum dose. Three rice cultivars used in the experiment were, i) BRRI dhan 39, ii) Khashkani, and iii) Shakkarkhora. Rice yield and dry matter production respond significantly to different environments. Increasing atmospheric CO2 increased grain yield. Stem dry weight, leaf dry weight, leaf sheath dry weight and root dry weight were increased in elevated CO2 than ambient CO2 and field condition. BRRI dhan 39 gave highest yield (50.82 g/plant) at supra optimum N level in elevated CO2. Local variety gave similar result under elevated CO2 in optimum and supra optimum N levels. The lowest yield (15.09 g/plant) was produced by Shakkorkhora in field condition with no nitrogen application. Key Words: Nitrogen; elevated CO2; yield; dry matter.DOI: 10.3329/bjar.v34i2.5804Bangladesh J. Agril. Res. 34(2): 313-322, June 2009


2000 ◽  
Vol 3 (2) ◽  
pp. 197-207 ◽  
Author(s):  
Dionisio M. Bañoc ◽  
Akira Yamauchi ◽  
Akihiko Kamoshita ◽  
Len J. Wade ◽  
Jose R. Pardales

Sign in / Sign up

Export Citation Format

Share Document