ENVIRONMENTAL FACTORS INFLUENCING COMMUNITY COMPOSITION OF GASTROPODS AND THEIR TREMATODE PARASITES IN SOUTHERN ONTARIO

2007 ◽  
Vol 93 (5) ◽  
pp. 992-998 ◽  
Author(s):  
Janet Koprivnikar ◽  
Robert L. Baker ◽  
Mark R. Forbes
2006 ◽  
Vol 92 (5) ◽  
pp. 997-1001 ◽  
Author(s):  
Janet Koprivnikar ◽  
Robert L. Baker ◽  
Mark R. Forbes

2005 ◽  
Vol 56 (Supplement) ◽  
pp. 48
Author(s):  
N Nihei ◽  
T Tsuda ◽  
H Kurahashi ◽  
Y Higa ◽  
O Komagata ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 855
Author(s):  
Mikołaj Kokociński ◽  
Dariusz Dziga ◽  
Adam Antosiak ◽  
Janne Soininen

Bacterioplankton community composition has become the center of research attention in recent years. Bacteria associated with toxic cyanobacteria blooms have attracted considerable interest. However, little is known about the environmental factors driving the bacteria community, including the impact of invasive cyanobacteria. Therefore, our aim has been to determine the relationships between heterotrophic bacteria and phytoplankton community composition across 24 Polish lakes with different contributions of cyanobacteria including the invasive species Raphidiopsis raciborskii. This analysis revealed that cyanobacteria were present in 16 lakes, while R. raciborskii occurred in 14 lakes. Our results show that bacteria communities differed between lakes dominated by cyanobacteria and lakes with minor contributions of cyanobacteria but did not differ between lakes with R. raciborskii and other lakes. Physical factors, including water and Secchi depth, were the major drivers of bacteria and phytoplankton community composition. However, in lakes dominated by cyanobacteria, bacterial community composition was also influenced by biotic factors such as the amount of R. raciborskii, chlorophyll-a and total phytoplankton biomass. Thus, our study provides novel evidence on the influence of environmental factors and R. raciborskii on lake bacteria communities.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 865
Author(s):  
Lantian Su ◽  
Xinxin Liu ◽  
Guangyao Jin ◽  
Yue Ma ◽  
Haoxin Tan ◽  
...  

In recent decades, wild sable (Carnivora Mustelidae Martes zibellina) habitats, which are often natural forests, have been squeezed by anthropogenic disturbances such as clear-cutting, tilling and grazing. Sables tend to live in sloped areas with relatively harsh conditions. Here, we determine effects of environmental factors on wild sable gut microbial communities between high and low altitude habitats using Illumina Miseq sequencing of bacterial 16S rRNA genes. Our results showed that despite wild sable gut microbial community diversity being resilient to many environmental factors, community composition was sensitive to altitude. Wild sable gut microbial communities were dominated by Firmicutes (relative abundance 38.23%), followed by Actinobacteria (30.29%), and Proteobacteria (28.15%). Altitude was negatively correlated with the abundance of Firmicutes, suggesting sable likely consume more vegetarian food in lower habitats where plant diversity, temperature and vegetation coverage were greater. In addition, our functional genes prediction and qPCR results demonstrated that energy/fat processing microorganisms and functional genes are enriched with increasing altitude, which likely enhanced metabolic functions and supported wild sables to survive in elevated habitats. Overall, our results improve the knowledge of the ecological impact of habitat change, providing insights into wild animal protection at the mountain area with hash climate conditions.


2020 ◽  
Author(s):  
Muhammad Awais Ali Khan ◽  
Khalid Mahmood Ch. ◽  
Ijaz Ashraf ◽  
Muhammad Tahir Siddiqui ◽  
Jerry W. Knox

Sign in / Sign up

Export Citation Format

Share Document