scholarly journals Confidence intervals for pulsed mass extinction events

Paleobiology ◽  
2007 ◽  
Vol 33 (2) ◽  
pp. 324-336 ◽  
Author(s):  
Steve C. Wang ◽  
Philip J. Everson

Many authors have proposed scenarios for mass extinctions that consist of multiple pulses or stages, but little work has been done on accounting for the Signor-Lipps effect in such extinction scenarios. Here we introduce a method for computing confidence intervals for the time or stratigraphic distance separating two extinction pulses in a pulsed extinction event, taking into account the incompleteness of the fossil record. We base our method on a flexible likelihood ratio test framework that is able to test whether the fossil record is consistent with any extinction scenario, whether simultaneous, pulsed, or otherwise. As an illustration, we apply our method to a data set on marine invertebrates from the Permo-Triassic boundary of Meishan, China. Using this data set, we show that the fossil record of ostracodes and that of brachiopods are each consistent with simultaneous extinction, and that these two extinction pulses are separated by 720,000 to 1.2 million years with 95% confidence. With appropriate data, our method could also be applied in other situations, such as tests of origination patterns, coordinated stasis, and recovery after a mass extinction.

Paleobiology ◽  
2018 ◽  
Vol 44 (2) ◽  
pp. 199-218 ◽  
Author(s):  
Steve C. Wang ◽  
Ling Zhong

AbstractThe Signor-Lipps effect states that even a sudden mass extinction will invariably appear gradual in the fossil record, due to incomplete fossil preservation. Most previous work on the Signor–Lipps effect has focused on testing whether taxa in a mass extinction went extinct simultaneously or gradually. However, many authors have proposed scenarios in which taxa went extinct in distinct pulses. Little methodology has been developed for quantifying characteristics of such pulsed extinction events. Here we introduce a method for estimating the number of pulses in a mass extinction, based on the positions of fossil occurrences in a stratigraphic section. Rather than using a hypothesis test and assuming simultaneous extinction as the default, we reframe the question by asking what number of pulses best explains the observed fossil record.Using a two-step algorithm, we are able to estimate not just the number of extinction pulses but also a confidence level or posterior probability for each possible number of pulses. In the first step, we find the maximum likelihood estimate for each possible number of pulses. In the second step, we calculate the Akaike information criterion and Bayesian information criterion weights for each possible number of pulses, and then apply ak-nearest neighbor classifier to these weights. This method gives us a vector of confidence levels for the number of extinction pulses—for instance, we might be 80% confident that there was a single extinction pulse, 15% confident that there were two pulses, and 5% confident that there were three pulses. Equivalently, we can state that we are 95% confident that the number of extinction pulses is one or two. Using simulation studies, we show that the method performs well in a variety of situations, although it has difficulty in the case of decreasing fossil recovery potential, and it is most effective for small numbers of pulses unless the sample size is large. We demonstrate the method using a data set of Late Cretaceous ammonites.


Extinctions are not biologically random: certain taxa or functional/ecological groups are more extinction-prone than others. Analysis of molluscan survivorship patterns for the end-Cretaceous mass extinctions suggests that some traits that tend to confer extinction resistance during times of normal (‘background’) levels of extinction are ineffectual during mass extinction. For genera, high species-richness and possession of widespread individual species imparted extinction-resistance during background times but not during the mass extinction, when overall distribution of the genus was an important factor. Reanalysis of Hoffman’s (1986) data ( Neues Jb. Geol. Palaont. Abh. 172, 219) on European bivalves, and preliminary analysis of a new northern European data set, reveals a similar change in survivorship rules, as do data scattered among other taxa and extinction events. Thus taxa and adaptations can be lost not because they were poorly adapted by the standards of the background processes that constitute the bulk of geological time, but because they lacked - or were not linked to - the organismic, species-level or clade-level traits favoured under mass-extinction conditions. Mass extinctions can break the hegemony of species-rich, well-adapted clades and thereby permit radiation of taxa that had previously been minor faunal elements; no net increase in the adaptation of the biota need ensue. Although some large-scale evolutionary trends transcend mass extinctions, post-extinction evolutionary pathways are often channelled in directions not predictable from evolutionary patterns during background times.


Paleobiology ◽  
2012 ◽  
Vol 38 (2) ◽  
pp. 265-277 ◽  
Author(s):  
Steve C. Wang ◽  
Aaron E. Zimmerman ◽  
Brendan S. McVeigh ◽  
Philip J. Everson ◽  
Heidi Wong

A key question in studies of mass extinctions is whether the extinction was a sudden or gradual event. This question may be addressed by examining the locations of fossil occurrences in a stratigraphic section. However, the fossil record can be consistent with both sudden and gradual extinctions. Rather than being limited to rejecting or not rejecting a particular scenario, ideally we should estimate therangeof extinction scenarios that is consistent with the fossil record. In other words, rather than testing the simplified distinction of “sudden versus gradual,” we should be asking, “How gradual?”In this paper we answer the question “How gradual could the extinction have been?” by developing a confidence interval for the duration of a mass extinction. We define the duration of the extinction as the time or stratigraphic thickness between the first and last taxon to go extinct, which we denote by Δ. For example, we would like to be able to say with 90% confidence that the extinction took place over a duration of 0.3 to 1.1 million years, or 24 to 57 meters of stratigraphic thickness. Our method does not deny the possibility of a truly simultaneous extinction; rather, in this framework, a simultaneous extinction is one whose value of Δ is equal to zero years or meters.We present an algorithm to derive such estimates and show that it produces valid confidence intervals. We illustrate its use with data from Late Permian ostracodes from Meishan, China, and Late Cretaceous ammonites from Seymour Island, Antarctica.


Paleobiology ◽  
1990 ◽  
Vol 16 (1) ◽  
pp. 22-24 ◽  
Author(s):  
J. Francis Thackeray

Prominent extinction “events” have been recognized from statistical analyses of marine invertebrate genera represented in Mesozoic and Cenozoic assemblages, contrasting with relatively low “background” extinction intensities measured in terms of a “percentage extinction” index. On a logarithmic scale, the slope of the relationship between time and extinction intensity for background extinctions is shown to be parallel to the slope obtained for most extinction events, characterized by intensities 100.35 above prevailing background levels. Although extinction intensities are variable, this study suggests that the magnitude of the factor(s) primarily associated with most mass extinctions in a 260-m.y. period (N = 9) need not necessarily have been very different from one event to another, an exception being the mass extinction at the end of the Cretaceous.


2021 ◽  
Vol 288 (1960) ◽  
Author(s):  
Pedro M. Monarrez ◽  
Noel A. Heim ◽  
Jonathan L. Payne

Whether mass extinctions and their associated recoveries represent an intensification of background extinction and origination dynamics versus a separate macroevolutionary regime remains a central debate in evolutionary biology. The previous focus has been on extinction, but origination dynamics may be equally or more important for long-term evolutionary outcomes. The evolution of animal body size is an ideal process to test for differences in macroevolutionary regimes, as body size is easily determined, comparable across distantly related taxa and scales with organismal traits. Here, we test for shifts in selectivity between background intervals and the ‘Big Five’ mass extinction events using capture–mark–recapture models. Our body-size data cover 10 203 fossil marine animal genera spanning 10 Linnaean classes with occurrences ranging from Early Ordovician to Late Pleistocene (485–1 Ma). Most classes exhibit differences in both origination and extinction selectivity between background intervals and mass extinctions, with the direction of selectivity varying among classes and overall exhibiting stronger selectivity during origination after mass extinction than extinction during the mass extinction. Thus, not only do mass extinction events shift the marine biosphere into a new macroevolutionary regime, the dynamics of recovery from mass extinction also appear to play an underappreciated role in shaping the biosphere in their aftermath.


1993 ◽  
Vol 1 (3) ◽  
pp. 207-216 ◽  
Author(s):  
David M. Raup

Extinction of widespread species is common in evolutionary time (millions of years) but rare in ecological time (hundreds or thousands of years). In the fossil record, there appears to be a smooth continuum between background and mass extinction; and the clustering of extinctions at mass extinctions cannot be explained by the chance coincidence of independent events. Although some extinction is selective, much is apparently random in that survivors have no recognizable superiority over victims. Extinction certainly plays an important role in evolution, but whether it is constructive or destructive has not yet been determined.


Paleobiology ◽  
2007 ◽  
Vol 33 (3) ◽  
pp. 435-454 ◽  
Author(s):  
Andrew Z. Krug ◽  
Mark E. Patzkowsky

AbstractUnderstanding what drives global diversity requires knowledge of the processes that control diversity and turnover at a variety of geographic and temporal scales. This is of particular importance in the study of mass extinctions, which have disproportionate effects on the global ecosystem and have been shown to vary geographically in extinction magnitude and rate of recovery.Here, we analyze regional diversity and turnover patterns for the paleocontinents of Laurentia, Baltica, and Avalonia spanning the Late Ordovician mass extinction and Early Silurian recovery. Using a database of genus occurrences for inarticulate and articulate brachiopods, bivalves, anthozoans, and trilobites, we show that sampling-standardized diversity trends differ for the three regions. Diversity rebounded to pre-extinction levels within 5 Myr in the paleocontinent of Laurentia, compared with 15 Myr or longer for Baltica and Avalonia. This increased rate of recovery in Laurentia was due to both lower Late Ordovician extinction rates and higher Early Silurian origination rates relative to the other continents. Using brachiopod data, we dissected the Rhuddanian recovery into genus origination and invasion. This analysis revealed that standing diversity in the Rhuddanian consisted of a higher proportion of invading taxa in Laurentia than in either Baltica or Avalonia. Removing invading genera from diversity counts caused Rhuddanian diversity to fall in Laurentia. However, Laurentian diversity still rebounded to pre-extinction levels within 10 Myr of the extinction event, indicating that genus origination rates were also higher in Laurentia than in either Baltica or Avalonia. Though brachiopod diversity in Laurentia was lower than in the higher-latitude continents prior to the extinction, increased immigration and genus origination rates made it the most diverse continent following the extinction. Higher rates of origination in Laurentia may be explained by its large size, paleogeographic location, and vast epicontinental seas. It is possible that the tropical position of Laurentia buffered it somewhat from the intense climatic fluctuations associated with the extinction event, reducing extinction intensities and allowing for a more rapid rebound in this region. Hypotheses explaining the increased levels of invasion into Laurentia remain largely untested and require further scrutiny. Nevertheless, the Late Ordovician mass extinction joins the Late Permian and end-Cretaceous as global extinction events displaying an underlying spatial complexity.


2015 ◽  
Vol 2 (5) ◽  
pp. 140385 ◽  
Author(s):  
Mario Bronzati ◽  
Felipe C. Montefeltro ◽  
Max C. Langer

The rich fossil record of Crocodyliformes shows a much greater diversity in the past than today in terms of morphological disparity and occupation of niches. We conducted topology-based analyses seeking diversification shifts along the evolutionary history of the group. Our results support previous studies, indicating an initial radiation of the group following the Triassic/Jurassic mass extinction, here assumed to be related to the diversification of terrestrial protosuchians, marine thalattosuchians and semi-aquatic lineages within Neosuchia. During the Cretaceous, notosuchians embodied a second diversification event in terrestrial habitats and eusuchian lineages started diversifying before the end of the Mesozoic. Our results also support previous arguments for a minor impact of the Cretaceous/Palaeogene mass extinction on the evolutionary history of the group. This argument is not only based on the information from the fossil record, which shows basal groups surviving the mass extinction and the decline of other Mesozoic lineages before the event, but also by the diversification event encompassing only the alligatoroids in the earliest period after the extinction. Our results also indicate that, instead of a continuous process through time, Crocodyliformes diversification was patchy, with events restricted to specific subgroups in particular environments and time intervals.


2018 ◽  
Vol 285 (1886) ◽  
pp. 20181191 ◽  
Author(s):  
Rafał Nawrot ◽  
Daniele Scarponi ◽  
Michele Azzarone ◽  
Troy A. Dexter ◽  
Kristopher M. Kusnerik ◽  
...  

Stratigraphic patterns of last occurrences (LOs) of fossil taxa potentially fingerprint mass extinctions and delineate rates and geometries of those events. Although empirical studies of mass extinctions recognize that random sampling causes LOs to occur earlier than the time of extinction (Signor–Lipps effect), sequence stratigraphic controls on the position of LOs are rarely considered. By tracing stratigraphic ranges of extant mollusc species preserved in the Holocene succession of the Po coastal plain (Italy), we demonstrated that, if mass extinction took place today, complex but entirely false extinction patterns would be recorded regionally due to shifts in local community composition and non-random variation in the abundance of skeletal remains, both controlled by relative sea-level changes. Consequently, rather than following an apparent gradual pattern expected from the Signor–Lipps effect, LOs concentrated within intervals of stratigraphic condensation and strong facies shifts mimicking sudden extinction pulses. Methods assuming uniform recovery potential of fossils falsely supported stepwise extinction patterns among studied species and systematically underestimated their stratigraphic ranges. Such effects of stratigraphic architecture, co-produced by ecological, sedimentary and taphonomic processes, can easily confound interpretations of the timing, duration and selectivity of mass extinction events. Our results highlight the necessity of accounting for palaeoenvironmental and sequence stratigraphic context when inferring extinction dynamics from the fossil record.


2018 ◽  
Vol 285 (1878) ◽  
pp. 20180232 ◽  
Author(s):  
Ádám T. Kocsis ◽  
Carl J. Reddin ◽  
Wolfgang Kiessling

Mass extinctions are defined by extinction rates significantly above background levels and have had substantial consequences for the evolution of life. Geographically selective extinctions, subsequent originations and species redistributions may have changed global biogeographical structure, but quantification of this change is lacking. In order to assess quantitatively the biogeographical impact of mass extinctions, we outline time-traceable bioregions for benthic marine species across the Phanerozoic using a compositional network. Mass extinction events are visually recognizable in the geographical depiction of bioregions. The end-Permian extinction stands out with a severe reduction of provinciality. Time series of biogeographical turnover represent a novel aspect of the analysis of mass extinctions, confirming concentration of changes in the geographical distribution of benthic marine life.


Sign in / Sign up

Export Citation Format

Share Document