Investigating the Role of Inflammasome Caspases 1 and 11 in the Acute Radiation Syndrome

2021 ◽  
Author(s):  
Andrea R. Daniel ◽  
Lixia Luo ◽  
Chang-Lung Lee ◽  
David G. Kirsch

Exposure to high dose radiation causes life-threatening acute and delayed effects. Defining the mechanisms of lethal radiation-induced acute toxicity of gastrointestinal and hematopoietic tissues are critical steps to identify drug targets to mitigate and protect against the acute radiation syndrome (ARS). For example, one rational approach would be to design pharmaceuticals that block cell death pathways to preserve tissue integrity in radiation-sensitive organ systems including the gastrointestinal tract and hematopoietic compartment. A previous study reported that the inflammasome pathway, which mediates inflammatory cell death through pyroptosis, promotes ARS. However, we show that mice lacking the inflammatory executioner caspases, caspase-1 and caspase-11, are not protected from ARS when compared directly to littermates expressing caspase-1 and caspase-11. These results suggest that alternative pathways will need to be targeted by drugs that successfully mitigate and protect against the ARS.

2018 ◽  
Vol 36 (4_suppl) ◽  
pp. 709-709
Author(s):  
Shushan Rajesh Rana ◽  
Cristina Espinosa ◽  
Rebecca Ruhl ◽  
Latroy Robinson ◽  
Charles R. Thomas ◽  
...  

709 Background: Radiation dose escalation causes significant changes within the tumor microenvironment (TME) to enhance tumor cell death including altered microRNA (miR) levels. Among endothelial miRs, we identified miR-15a exhibits dose dependent differential regulation. miR-15a targets a key determinant of endothelial cell (EC) radiosensitivity, acid sphingomyelinase (SMPD1), an enzyme that drives rapid EC apoptosis via enhanced ceramide production. In colorectal cancer (CRC) (n = 182 patients), high miR-15a is associated with worse 5-year progression free and overall survival. miR-15a also affects immune function by promoting a pro-inflammatory TME milieu. We hypothesized miR-15a inhibition will increase tumor cell death through preservation of EC SMPD1, enhancing endothelial apoptosis and inflammatory cytokine upregulation. Methods: Using TaqMan Human miR panels, miRs were profiled in human umbilical vein ECs (HUVECs) after single 2 vs 20 Gy treatment. miR-target prediction programs identified miRs targeting SMPD1. In vitro gain and loss of function studies were performed with miR transfections in HUVECs and CT26 CRC cells. CXCL10 expression was measured by qRT-PCR. Caspase 1 activation was measured by a luminescence based assay. A CT26 syngeneic CRC flank murine model was used for in vivo miR-15a inhibitor assessment administered via tail vein injection unencapsulated or encapsulated in vascular-targeted 7C1 nanoparticles. Results: Among miRs targeting SMPD1, miR-15a exhibited the greatest differential change in HUVECs 6h post-IR between low and high dose radiation. Lower dose was associated with higher miR-15a and vice versa. Further, miR-15a levels inversely correlated with SMPD1. Exogenous miR-15a significantly decreased SMPD1 mRNA and protein. miR-15a inhibition decreased proliferation in both HUVECs and CT26 cells and increased apoptosis when combined with radiation. miR-15a inhibition increased endothelial CXCL10 expression and caspase-1 activation. Both systemic and vascular-targeted miR-15a inhibitor significantly diminished tumor growth in vivo. Conclusions: Our data suggests inhibition of vascular miR-15a is sufficient to decrease tumor growth likely due to rescue of endothelial SMPD1.


Author(s):  
Leif Stenke ◽  
Christel Hedman ◽  
Marita Lagergren Lindberg ◽  
Karin Lindberg ◽  
Jack Valentin

Abstract The major immediate and severe medical consequences in man following exposure to high doses of ionizing radiation can be summarized within the concept of the acute radiation syndrome (ARS). In a dose-dependent fashion, a multitude of organ systems can be affected by such irradiation, presenting considerable medical challenges to treating physicians. Accidents or malevolent events leading to ARS can provoke devastating effects, but they occur at a low frequency and in a highly varying manner and magnitude. Thus, it is difficult to make precise medical predictions and planning, or to draw conclusive evidence from occurred events. Therefore, knowledge from on-going continuous developments within related medical areas needs to be acknowledged and incorporated into the ARS setting, enabling the creation of evidence-based guidelines. In 2011 the WHO published a first global consensus on the medical management of ARS among patients subjected to nontherapeutic radiation. During the recent decade the understanding of and capability to counteract organ damage related to radiation and other agents have improved considerably. Furthermore, legal and logistic hurdles in the process of formally approving appropriate medical countermeasures have been reduced. We believe the time is now ripe for developing an update of internationally consented medical guidelines on ARS.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Robert Moore ◽  
Bhanwar Lal Puniya ◽  
Robert Powers ◽  
Chittibabu Guda ◽  
Kenneth W. Bayles ◽  
...  

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


Author(s):  
Laurence Lebaron-Jacobs ◽  
Eduardo Daniel Herrera Reyes

Abstract The Medical management of radiation accidents manual on the acute radiation syndrome (METREPOL) proposed a successful strategic approach to diagnosing and treating acute radiation syndrome: the response category concept. Based on clinical and laboratory parameters, this approach aimed to assess damage to critical organ systems as a function of time, categorising different therapeutical approaches. After 20 years of its publication, the following paper attempts to provide a broad overview of this important document and tries to respond if proposed criteria are still relevant for the medical management of radiation-induced injuries. In addition, a critical analysis of its limitations and perspectives is proposed.


2011 ◽  
Vol 5 (3) ◽  
pp. 183-201 ◽  
Author(s):  
Nicholas Dainiak ◽  
Robert Nicolas Gent ◽  
Zhanat Carr ◽  
Rita Schneider ◽  
Judith Bader ◽  
...  

ABSTRACTObjectives:The World Health Organization convened a panel of experts to rank the evidence for medical countermeasures for management of acute radiation syndrome (ARS) in a hypothetical scenario involving the hospitalization of 100 to 200 victims. The goal of this panel was to achieve consensus on optimal management of ARS affecting nonhematopoietic organ systems based upon evidence in the published literature.Methods:English-language articles were identified in MEDLINE and PubMed. Reference lists of retrieved articles were distributed to conferees in advance of and updated during the meeting. Published case series and case reports of ARS, publications of randomized controlled trials of relevant interventions used to treat nonirradiated individuals, reports of studies in irradiated animals, and prior recommendations of subject matter experts were selected. Studies were extracted using the Grading of Recommendations Assessment Development and Evaluation system. In cases in which data were limited or incomplete, a narrative review of the observations was made.Results:No randomized controlled trials of medical countermeasures have been completed for individuals with ARS. Reports of countermeasures were often incompletely described, making it necessary to rely on data generated in nonirradiated humans and in experimental animals. A strong recommendation is made for the administration of a serotonin-receptor antagonist prophylactically when the suspected exposure is >2 Gy and topical steroids, antibiotics, and antihistamines for radiation burns, ulcers, or blisters; excision and grafting of radiation ulcers or necrosis with intractable pain; provision of supportive care to individuals with neurovascular syndrome; and administration of electrolyte replacement therapy and sedatives to individuals with significant burns, hypovolemia, and/or shock. A strong recommendation is made against the use of systemic steroids in the absence of a specific indication. A weak recommendation is made for the use of fluoroquinolones, bowel decontamination, loperamide, and enteral nutrition, and for selective oropharyngeal/digestive decontamination, blood glucose maintenance, and stress ulcer prophylaxis in critically ill patients.Conclusions:High-quality studies of therapeutic interventions in humans exposed to nontherapeutic radiation are not available, and because of ethical concerns regarding the conduct of controlled studies in humans, such studies are unlikely to emerge in the near future.(Disaster Med Public Health Preparedness. 2011;5:183–201)


Author(s):  
T. L. Benning ◽  
P. Ingram ◽  
J. D. Shelburne

Two benzofuran derivatives, chlorpromazine and amiodarone, are known to produce inclusion bodies in human tissues. Prolonged high dose chlorpromazine therapy causes hyperpigmentation of the skin with electron-dense inclusion bodies present in dermal histiocytes and endothelial cells ultrastructurally. The nature of the deposits is not known although a drug-melanin complex has been hypothesized. Amiodarone may also cause cutaneous hyperpigmentation and lamellar lysosomal inclusion bodies have been demonstrated within the cells of multiple organ systems. These lamellar bodies are believed to be the product of an amiodarone-induced phospholipid storage disorder. We performed transmission electron microscopy (TEM) and energy dispersive x-ray microanalysis (EDXA) on tissue samples from patients treated with these drugs, attempting to detect the sulfur atom of chlorpromazine and the iodine atom of amiodarone within their respective inclusion bodies.A skin biopsy from a patient with hyperpigmentation due to prolonged chlorpromazine therapy was fixed in 4% glutaraldehyde and processed without osmium tetroxide or en bloc uranyl acetate for Epon embedding.


Author(s):  
Nivedita Bhardwaj ◽  
Nancy Tripathi ◽  
Bharat Goel ◽  
Shreyans K. Jain

: During cancer progression, the unrestricted proliferation of cells is supported by the impaired cell death response provoked by certain oncogenes. Both autophagy and apoptosis are the signaling pathways of cell death, which are targeted for cancer treatment. Defects in apoptosis result in reduced cell death and ultimately tumor progression. The tumor cells lacking apoptosis phenomena are killed by ROS- mediated autophagy. The autophagic programmed cell death requires apoptosis protein for inhibiting tumor growth; thus, the interconnection between these two pathways determines the fate of a cell. The cross-regulation of autophagy and apoptosis is an important aspect to modulate autophagy, apoptosis and to sensibilise apoptosis-resistant tumor cells under metabolic stress and might be a rational approach for drug designing strategy for the treatment of cancer. Numerous proteins involved in autophagy have been investigated as the druggable target for anticancer therapy. Several compounds of natural origin have been reported, to control autophagy activity through the PI3K/Akt/mTOR key pathway. Diosgenin, a steroidal sapogenin has emerged as a potential candidate for cancer treatment. It induces ROS-mediated autophagy, inhibits PI3K/Akt/mTOR pathway, and produces cytotoxicity selectively in cancer cells. This review aims to focus on optimal strategies using diosgenin to induce apoptosis by modulating the pathways involved in autophagy regulation and its potential implication in the treatment of various cancer. The discussion has been extended to the medicinal chemistry of semi-synthetic derivatives of diosgenin exhibiting anticancer activity.


2012 ◽  
Vol 103 (4) ◽  
pp. 356-366 ◽  
Author(s):  
Hui Lin Chua ◽  
P. Artur Plett ◽  
Carol H. Sampson ◽  
Mandar Joshi ◽  
Rebeka Tabbey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document