Relative Abundance, Habitat Use, and Long-term Population Changes of Wintering and Resident Landbirds on St. John, U.S. Virgin Islands

2009 ◽  
Vol 121 (1) ◽  
pp. 41-53 ◽  
Author(s):  
David W. Steadman ◽  
Jensen R. Montambault ◽  
Scott K. Robinson ◽  
Sonja N. Oswalt ◽  
Thomas J. Brandeis ◽  
...  
2020 ◽  
Vol 639 ◽  
pp. 169-183
Author(s):  
P Matich ◽  
BA Strickland ◽  
MR Heithaus

Chronic environmental change threatens biodiversity, but acute disturbance events present more rapid and immediate threats. In 2010, a cold snap across south Florida had wide-ranging impacts, including negative effects on recreational fisheries, agriculture, and ecological communities. Here, we use acoustic telemetry and historical longline monitoring to assess the long-term implications of this event on juvenile bull sharks Carcharhinus leucas in the Florida Everglades. Despite the loss of virtually all individuals (ca. 90%) within the Shark River Estuary during the cold snap, the catch per unit effort (CPUE) of age 0 sharks on longlines recovered through recruitment within 6-8 mo of the event. Acoustic telemetry revealed that habitat use patterns of age 0-2 sharks reached an equilibrium in 4-6 yr. In contrast, the CPUE and habitat use of age 3 sharks required 5-7 yr to resemble pre-cold snap patterns. Environmental conditions and predation risk returned to previous levels within 1 yr of the cold snap, but abundances of some prey species remained depressed for several years. Reduced prey availability may have altered the profitability of some microhabitats after the cold snap, leading to more rapid ontogenetic shifts to marine waters among sharks for several years. Accelerated ontogenetic shifts coupled with inter-individual behavioral variability of bull sharks likely led to a slower recovery rate than predicted based on overall shark CPUE. While intrinsic variation driven by stochasticity in dynamic ecosystems may increase the resistance of species to chronic and acute disturbance, it may also increase recovery time in filling the diversity of niches occupied prior to disturbance if resistive capacity is exceeded.


2021 ◽  
pp. 101377
Author(s):  
Anant Deshwal ◽  
Pooja Panwar ◽  
Joseph C. Neal ◽  
Matthew A. Young

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Hanlin Liu ◽  
Linqiang Yang ◽  
Linchao Li

A variety of climate factors influence the precision of the long-term Global Navigation Satellite System (GNSS) monitoring data. To precisely analyze the effect of different climate factors on long-term GNSS monitoring records, this study combines the extended seven-parameter Helmert transformation and a machine learning algorithm named Extreme Gradient boosting (XGboost) to establish a hybrid model. We established a local-scale reference frame called stable Puerto Rico and Virgin Islands reference frame of 2019 (PRVI19) using ten continuously operating long-term GNSS sites located in the rigid portion of the Puerto Rico and Virgin Islands (PRVI) microplate. The stability of PRVI19 is approximately 0.4 mm/year and 0.5 mm/year in the horizontal and vertical directions, respectively. The stable reference frame PRVI19 can avoid the risk of bias due to long-term plate motions when studying localized ground deformation. Furthermore, we applied the XGBoost algorithm to the postprocessed long-term GNSS records and daily climate data to train the model. We quantitatively evaluated the importance of various daily climate factors on the GNSS time series. The results show that wind is the most influential factor with a unit-less index of 0.013. Notably, we used the model with climate and GNSS records to predict the GNSS-derived displacements. The results show that the predicted displacements have a slightly lower root mean square error compared to the fitted results using spline method (prediction: 0.22 versus fitted: 0.31). It indicates that the proposed model considering the climate records has the appropriate predict results for long-term GNSS monitoring.


1972 ◽  
Vol 104 (2) ◽  
pp. 263-270 ◽  
Author(s):  
Peter W. Price

AbstractParasitoid populations were sampled before, and for 4 years following, an aerial application of the insecticide phosphamidon to control a sawfly outbreak. Adult parasitoid mortality was high because of spraying, but a reservoir of parasitoids in host cocoons remained to repopulate the treated areas. In moister sites the number of species decreased and their relative abundance changed, but moderate numbers of parasitoids remained 4 years after spraying. In a dry site with little ground vegetation, none of the species present before spraying remained by the fourth year.


2021 ◽  
Author(s):  
Akhtar-E Ekram ◽  
Rebecca Hamilton ◽  
Matthew Campbell ◽  
Chloe Plett ◽  
Sureyya Kose ◽  
...  

<p>Several studies have shown that ancient plant-derived DNA can be extracted and sequenced from lake sediments and complement the analysis of fossil pollen in reconstructing past vegetation responses to climate variability and anthropogenic perturbations. The majority of such studies have been performed on Holocene lakes located in cooler higher latitude regions whereas similar studies from tropical lakes are limited. Here, we report a ~1 Ma record of vegetation changes in tropical Lake Towuti (Sulawesi, Indonesia) through parallel pollen and sedimentary ancient DNA (sed aDNA) analysis. Lake Towuti is located in a vegetation biodiversity hotspot and in the centre of the Indo Pacific Warm Pool (IPWP), which comprises the world’s warmest oceanic waters and influences globally important climate systems. In the context of global change, the surface area of the IPWP is rapidly expanding. Lake Towuti is of particular interest since it provides a unique opportunity to obtain a long-term record of IPWP-controlled climate-ecosystem interactions and ecosystem resilience. Stratigraphic analysis of fossil pollen vs. sequencing of preserved chloroplast DNA (cpDNA) signatures (i.e., trnL-P6) both revealed that Lake Towuti experienced significant vegetation changes during the transition from a landscape initially characterized by active river channels, shallow lakes and swamps into a permanent lake ~1 Ma ago. Both proxies marked a predominance of trees or shrubs during most of Lake Towuti’s history, but the trnL-P6 barcoding approach revealed a much higher relative abundance of remote montane conifers, which likely have produced large amounts of chloroplast-rich airborne pollen that were subsequently buried in the sedimentary record. The pollen record showed a higher relative abundance of evergreen tropical forest vegetation, whereas the trnL-P6 record revealed a higher relative abundance of predominantly wetland herbs that must have entered the lake from the local catchment in the form of chloroplast-rich litter. Furthermore, the sedimentary record was rich in presumably wind-derived chloroplast-lacking fern spores, while fern trnL-P6 was only sporadically detected. Only through trnL-P6 barcoding, fern-derived biomass in the sedimentary record could be identified as Schizaeaceae, which is a primitive tropical grass-like fern family often associated with swampy or moist soils. Unlike pollen, trnL-P6 could identify grasses at clade and subfamily levels and confirmed that the majority of grasses in the area represented wet climate C3 grasses or those that can switch between C3 and C4 carbon fixation pathways, whereas grasses that can only perform C4 carbon fixation, indicative of dry climate conditions, were not detected. At least for sediments deposited prior to the Last Glacial Maximum, neither pollen nor trnL-P6 revealed significant vegetation changes between alternating layers of lacustrine green and red sideritic clays thought to have been deposited during orbitally controlled wetter vs. drier periods. These preliminary results suggest that vegetation in this tropical biodiversity hotspot may be relatively resilient to long-term variations in IPWP hydrology.</p>


2019 ◽  
Vol 20 (6) ◽  
pp. 1303-1314 ◽  
Author(s):  
Laura Hagemann ◽  
Mimi Arandjelovic ◽  
Martha M. Robbins ◽  
Tobias Deschner ◽  
Matthew Lewis ◽  
...  

2020 ◽  
Vol 248 ◽  
pp. 108649
Author(s):  
Charlotte E. Searle ◽  
Dominik T. Bauer ◽  
M. Kristina Kesch ◽  
Jane E. Hunt ◽  
Roseline Mandisodza-Chikerema ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document