scholarly journals Endothelins and hypoxia-inducible factor in cancer

2007 ◽  
Vol 14 (2) ◽  
pp. 233-244 ◽  
Author(s):  
M J Grimshaw

The endothelin system is a family of three similar small peptides, two G-protein-coupled receptors and two proteinases. Endothelins have several physiological roles, notably in embryonic differentiation and vascular homeostasis. Numerous types of tumour express endothelins and their regulation is often aberrant when compared with the normal tissue from which the tumour arose. However, endothelin expression is tumour-type specific, and in some instances, expression of individual members of the endothelin system will be upregulated, while in other tumour types, they may be downregulated. Endothelins have numerous potential roles in tumours including modulating angiogenesis, inducing mitogenesis and invasion of tumour cells, and protecting cells from apoptosis. Expression of endothelins is controlled by the tumour microenvironment, whilst the endothelins themselves modify that environment; a case in point is that hypoxia stimulates endothelin expression via hypoxia-inducible factor (HIF)-1, while endothelins stabilise HIF-1 leading to expression of, for instance, vascular endothelial growth factor. This review highlights the potential roles of endothelins in various cancers and describes the pre-clinical and clinical progress that has been made in several tumour types – notably prostate, ovary, melanoma and breast cancer. The interactions between the endothelin network and HIF-1 are highlighted.

Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 309
Author(s):  
Deborah Reynaud ◽  
Frederic Sergent ◽  
Roland Abi Nahed ◽  
Wael Traboulsi ◽  
Constance Collet ◽  
...  

Endocrine gland derived vascular endothelial growth factor (EG-VEGF) is a canonical member of the prokineticin (PROKs) family. It acts via the two G-protein coupled receptors, namely PROKR1 and PROKR2. We have recently demonstrated that EG-VEGF is highly expressed in the human placenta; contributes to placental vascularization and growth and that its aberrant expression is associated with pregnancy pathologies including preeclampsia and fetal growth restriction. These findings strongly suggested that antagonization of its receptors may constitute a potential therapy for the pregnancy pathologies. Two specific antagonists of PROKR1 (PC7) and for PROKR2 (PKRA) were reported to reverse PROKs adverse effects in other systems. In the view of using these antagonists to treat pregnancy pathologies, a proof of concept study was designed to determine the biological significances of PC7 and PKRA in normal pregnancy outcome. PC7 and PKRA were tested independently or in combination in trophoblast cells and during early gestation in the gravid mouse. Both independent and combined treatments uncovered endogenous functions of EG-VEGF. The independent use of antagonists distinctively identified PROKR1 and PROKR2-mediated EG-VEGF signaling on trophoblast differentiation and invasion; thereby enhancing feto-placental growth and pregnancy outcome. Thus, our study provides evidence for the potential safe use of PC7 or PKRA to improve pregnancy outcome.


Sign in / Sign up

Export Citation Format

Share Document