The gene for the common α subunit of porcine pituitary glycoprotein hormone

1991 ◽  
Vol 7 (1) ◽  
pp. 27-34 ◽  
Author(s):  
Y. Kato ◽  
T. Ezashi ◽  
T. Hirai ◽  
T. Kato

ABSTRACT The gene for the common α subunit of the porcine anterior pituitary glycoprotein hormones was cloned from a genomic library constructed in EMBL3. The nucleotide sequence of the entire coding sequence of the porcine common α-subunit gene was determined in addition to one intron and 1059 and 160 bp of the 5′-and 3′-flanking regions respectively. Southern blot analysis of the porcine genomic DNA indicated that the common α-subunit gene is present as a single copy. The transcriptional unit of the porcine common α subunit spanned about 14kb and contained four exons interrupted by three introns of about 11.5, 1.2 and 0.4kb. The short untranslated sequence in the first exon and the location of the exon/intron junctions at amino acid residues +9/+10 and +71/+72 were highly conserved among the rat, human and bovine common α-subunit genes. In the proximal portion of the 5′-flanking region, one TATA box and one CCAAT box were present. A steroid-responsive element was not found up to 1059 bases upstream from the transcription start site. The potential AP-1 and AP-2 factor-responsive elements were present at three and one positions respectively in the 5′-flanking region. This feature suggests that hypothalamic gonadotrophin-releasing hormone stimulates the expression of the common α-subunit gene predominantly by a signal-transduction system, with the protein kinase C cascade and factors AP-1 and AP-2 as mediators. The cyclic AMP-responsive element was also present at two positions, but a single base substitution was found in each sequence compared with the consensus sequence. The porcine common α-subunit gene has a structure distinct from its counterparts, the porcine FSH-β and LH-β genes, reflecting differential control of their synthesis during gametogenesis.

1990 ◽  
Vol 5 (2) ◽  
pp. 137-146 ◽  
Author(s):  
T. Ezashi ◽  
T. Hirai ◽  
T. Kato ◽  
K. Wakabayashi ◽  
Y. Kato

ABSTRACT The gene for the β subunit of porcine LH (LH-β) was cloned from a genomic library constructed in EMBL3. The nucleotide sequence was determined for the entire gene transcriptional unit of porcine LH-β in addition to 1277 and 372 bp of the 5′- and 3′-flanking regions respectively. Southern blot analysis of the porcine genomic DNA indicated that the LH-β gene is present as a single copy. The transcriptional unit of porcine LH-β spanned 1107 bp and contained three exons interrupted by two introns of 326 and 289 bp. The short untranslated sequence in the first exon and the location of the exon/intron junctions at amino acid residues −16/−15 and +41/+42 were highly conserved in the rat, human and bovine LH-β genes. In the 5′-flanking region, one TATA box and two CCAAT boxes were present. The steroid-responsive element was not found up to 1277 bases upstream of the transcription start site. The potential AP-2 factor-responsive elements appeared nine times within the sequence that was determined, and four of them were located in the 5′-flanking region. Two distal AP-2 elements were arranged in an inverted repeat forming a 16 bp palindromic sequence. This feature suggested that hypothalamic gonadotrophin-releasing hormone stimulates expression of the LH-β gene, predominantly by a signal-transduction system with the protein kinase C cascade and a mediator, the AP-2 factor. A further characteristic feature of the porcine LH-β gene was the presence of clusters of GC boxes and CACCC elements in the 5′-flanking region and the downstream sequence. Co-existence of these regulatory elements with other elements, such as the AP-2 element or CCAAT box, was also found. The porcine LH-β gene shows a structure distinct from the porcine FSH-β and common α genes, which are counterparts of the LH-β gene, reflecting differential control of their synthesis during gametogenesis.


1998 ◽  
Vol 142 (1-2) ◽  
pp. 141-152 ◽  
Author(s):  
William M Wood ◽  
Janet M Dowding ◽  
Virginia D Sarapura ◽  
Michael T McDermott ◽  
David F Gordon ◽  
...  

1992 ◽  
Vol 8 (3) ◽  
pp. 249-258 ◽  
Author(s):  
I. S. Scott ◽  
M. K. Bennett ◽  
A. E. Porter-Goff ◽  
C. J. Harrison ◽  
B. S. Cox ◽  
...  

ABSTRACT Hypogonadal (hpg) mutant mice, with a congenital deficiency of hypothalamic gonadotrophin-releasing hormone (GnRH), and testicular feminized (tfm) mice, which lack a functional androgen receptor, were used to study the effects of the potent GnRH agonist 'Zoladex' (ICI 118630; d-Ser (But)6, Azgly10-GnRH) on pituitary and gonadal function. Zoladex (0.5 mg) in a sustained-release lactide—glycolide copolymer depot was administered subcutaneously under anaesthesia and was left in place for 7 days, after which time the effects of the drug upon pituitary and serum gonadotrophin concentrations, glycoprotein hormone subunit mRNAs and testicular morphology were investigated. At the pituitary level, Zoladex treatment resulted in a substantial reduction in LH content in normal males, and LH content was depressed in hpg mice even below the basal levels normally found in these mutants. Pituitary LH content in the Zoladex-treated animals was depressed in the tfm groups, but not to the same levels as those found in the normal and castrated normal mice. Zoladex treatment at the time of castration prevented the post-operative elevation in serum LH associated with castration alone. In the androgen-deficient tfm mouse, Zoladex did not depress the normally elevated serum LH levels. Serum LH in the hpg animals was, in all cases, below the limit of detection of the assay. Pituitary FSH content was depressed into the hpg range in both the normal and castrated animals, but there was no further depression in the hpg mice. The pituitary content was reduced in the tfm mice, again the effects not being as dramatic as in the normal and castrated animals. Serum FSH content, as measured by radioimmunoassay, was depressed by 50% in normal mice; there was no reduction in the hpg mice, however. With regard to pituitary gonadotrophic hormone gene expression, Zoladex administration to normal mice caused a dramatic reduction in LHβ mRNA content, to a level approximating that found in untreated hpg mice. The drug also depressed LHβ mRNA in the castrated group to the hpg range when given at the time of castration, whereas in untreated castrated mice there was a significant increase in LHβ mRNA. In the tfm mouse, which can be considered as a model for long-term failure of androgen feedback, Zoladex again induced a fall in LHβ mRNA, but not to the same extent as in the normal and normal castrated group. Zoladex had no effect on the already low levels of LHβ mRNA found in hpg mice. Pituitary FSHβ mRNA levels were not significantly altered by Zoladex in any of the treatment groups, whereas the drug induced a substantial rise in the common α-subunit mRNA in normal and hpg mice, to a level equalling that found in castrated tfm mice. In the latter two groups, Zoladex treatment did not result in a further increase in α-subunit mRNA above that found after castration alone, or in the untreated tfm mutant. Treatment for 7 days with Zoladex resulted in a significant increase in testis weight, with spermatogenesis advancing beyond the first meiotic division with many round spermatids found within the seminiferous tubules. However, the interstitial cells remained atrophic and there was evidence of seminal vesicle growth. Nevertheless, there was a small but significant increase in testicular androgen content. Administration of the agonist to hypophysectomized hpg mice did not stimulate testicular or seminal vesicle growth, suggesting that the drug does not stimulate steroidogenesis via a direct action upon the testis. Overall, the pharmacological effects of the drug appear to have turned off the transcription of the LHβ gene, with a consequent reduction in LH synthesis and probably also secretion in the longer term. With FSHβ, gene transcription was apparently unchanged and, with a substantial increase in the common α-subunit message, it would appear that the pituitary gland of Zoladex-treated animals may be predominantly biased towards FSH secretion. Although the circulating FSH levels as measured by radioimmunoassay were unaltered by Zoladex, there are several reports that GnRH agonists increase serum levels of bioactive hormones, perhaps by altering glycosylation of the FSH dimer glycoprotein.


1990 ◽  
Vol 4 (10) ◽  
pp. 1480-1487 ◽  
Author(s):  
Robert A. Fenstermaker ◽  
Todd A. Farmerie ◽  
Colin M. Clay ◽  
Debora L. Hamernik ◽  
John H. Nilson

1990 ◽  
Vol 4 (4) ◽  
pp. 573-582 ◽  
Author(s):  
Bogi Andersen ◽  
Giulia Catignani Kennedy ◽  
Debora L. Hamernik ◽  
Joseph A. Bokar ◽  
Robert Bohinski ◽  
...  

2000 ◽  
Vol 20 (10) ◽  
pp. 3331-3344 ◽  
Author(s):  
Mark S. Roberson ◽  
Makiko Ban ◽  
Tong Zhang ◽  
Jennifer M. Mulvaney

ABSTRACT The aim of these studies was to elucidate a role for epidermal growth factor (EGF) signaling in the transcriptional regulation of the glycoprotein hormone α subunit gene, a subunit of chorionic gonadotropin. Studies examined the effects of EGF and the adenylate cyclase activator forskolin on the expression of a transfected α subunit reporter gene in a human choriocarcinoma cell line (JEG3). At maximal doses, administration of EGF resulted in a 50% increase in a subunit reporter activity; forskolin administration induced a fivefold activation; the combined actions of EGF and forskolin resulted in synergistic activation (greater than eightfold) of the α subunit reporter. Mutagenesis studies revealed that the cyclic AMP response elements (CRE) were required and sufficient to mediate EGF-forskolin-induced synergistic activation. The combined actions of EGF and forskolin resulted in potentiated activation of extracellular signal-regulated kinase (ERK) enzyme activity compared with EGF alone. Specific blockade of ERK activation was sufficient to block EGF-forskolin-induced synergistic activation of the α subunit reporter. Pretreatment of JEG3 cells with a p38 mitogen-activated protein kinase inhibitor did not influence activation of the α reporter. However, overexpression of c-Jun N-terminal kinase (JNK)-interacting protein 1 as a dominant interfering molecule abolished the synergistic effects of EGF and forskolin on the α subunit reporter. CRE binding studies suggested that the CRE complex consisted of CRE binding protein and EGF-ERK-dependent recruitment of c-Jun–c-Fos (AP-1) to the CRE. A dominant negative form of c-Fos (A-Fos) that specifically disrupts c-Jun–c-Fos DNA binding inhibited synergistic activation of the α subunit. Thus, synergistic activation of the α subunit gene induced by EGF-forskolin requires the ERK and JNK cascades and the recruitment of AP-1 to the CRE binding complex.


Sign in / Sign up

Export Citation Format

Share Document