Gonadotrophin-releasing hormone (GnRH) overcomes GnRH antagonist-induced suppression of LH secretion in primates

1986 ◽  
Vol 110 (1) ◽  
pp. 145-150 ◽  
Author(s):  
G. R. Marshall ◽  
F. Bint Akhtar ◽  
G. F. Weinbauer ◽  
E. Nieschlag

ABSTRACT If the suppressive effects of gonadotrophin-releasing hormone (GnRH) antagonists on gonadotrophin secretion are mediated through GnRH-receptor occupancy alone, it should be possible to restore serum gonadotrophin levels by displacing the antagonist with exogenous GnRH. To test this hypothesis, eight adult crab-eating macaques (Macaca fascicularis), weight 4·7–7·6 kg, were subjected to the following treatment regimens. A GnRH-stimulation test was performed before and 4, 12 and 24 h after a single s.c. injection of the GnRH antagonist (N-Ac-d-p-Cl-Phe1,2,d-Trp3,d-Arg6,d-Ala10)-GnRH (ORG 30276). The stimulation tests were performed with 0·5, 5·0 or 50 μg GnRH given as a single i.v. bolus. Blood was taken before and 15, 30 and 60 min after each bolus for analysis of bioactive LH and testosterone. The GnRH-challenging doses were given as follows: 0·5 μg GnRH was injected at 0 and 4 h, followed by 5·0 μg after 12 h and 50 μg after 24 h. One week later, 5·0 μg GnRH were given at 0 and 4 h, followed by 50 μg after 12 h and 0·5 μg after 24 h. Finally, after another week, the GnRH challenges began with 50 μg at 0 and 4 h, followed by 0·5 μg at 12 h and 5·0 μg at 24 h. This design permitted comparison of the LH and testosterone responses with respect to the dose of GnRH and the time after administration of GnRH antagonist. The areas under the response curves were measured and statistical evaluation was carried out by means of non-parametric two-way analysis of variance followed by the multiple comparisons of Wilcoxon and Wilcox. Four hours after the antagonist was injected, the LH and testosterone responses to all three doses of GnRH were suppressed. At the lowest dose of GnRH (0·5 μg) the responses remained reduced even after 24 h, whereas the higher doses of GnRH elicited an LH and testosterone response at 12 and 24 h which was not significantly different from that at 0 h. These data demonstrate that the suppression of LH secretion by a GnRH antagonist in vivo can be overcome by exogenously administered GnRH in a dose- and time-dependent manner, thus strongly supporting the contention that GnRH antagonists prevent gonadotrophin secretion by GnRH-receptor occupancy. J. Endocr. (1986) 110, 145–150

1992 ◽  
Vol 133 (3) ◽  
pp. 439-445 ◽  
Author(s):  
G. F. Weinbauer ◽  
P. Hankel ◽  
E. Nieschlag

ABSTRACT We reported previously that after a single injection of a gonadotrophin-releasing hormone (GnRH) antagonist to male monkeys, exogenous GnRH stimulated LH secretion in a time- and dose-dependent manner, indicating that GnRH antagonist-induced blockade of LH secretion resulted from pituitary GnRH receptor occupancy. The present study was performed to investigate whether GnRH can also restore a blockade of LH and testosterone secretion during chronic GnRH antagonist administration. Four adult male cynomolgus monkeys (Macacafascicularis) received daily s.c. injections of the GnRH antagonist [N-Ac-d-pCl-Phe1,2,d-TRP3,d-Arg6,d-Ala10]-GnRH (ORG 30276) at a dose of 1400–1600 μg/kg for 8 weeks. Before the GnRH antagonist was given and during weeks 3 and 8 of treatment, pituitary stimulation tests were performed with 0·5, 5, 50 and 500 μg synthetic GnRH, administered in increasing order at intervals of 24 h. At 8 weeks, a dose of 1000 μg GnRH was also given. All doses of GnRH significantly (P < 0·05) stimulated serum concentrations of bioactive LH (3- to 8-fold) and testosterone (2·6- to 3·8-fold) before the initiation of GnRH antagonist treatment. After 3 weeks of GnRH antagonist treatment, only 50 and 500 μg GnRH doses were able to increase LH and testosterone secretion. Release of LH was significantly (P < 0·05) more elevated with 500 μg compared with 50 μg GnRH. After 8 weeks, only the highest dose of 1000 μg elicited a significant (P < 0·05) rise in LH secretion. Basal hormone levels just before the bolus injection of GnRH were similar (P > 0·10–0·80). This finding eliminated the possibility that the increasing doses of GnRH had primed the pituitary thereby resulting in higher stimulatory effects of the larger doses of GnRH. In conclusion, the present data indicate that, even after prolonged exposure to a GnRH antagonist, the pituitary retains some degree of responsiveness to GnRH. This observation supports the view that the inhibitory effects of chronic GnRH antagonist treatment are also mediated, at least in part, by occupancy of the pituitary GnRH receptor rather than by receptor down-regulation. Journal of Endocrinology (1992) 133, 439–445


1989 ◽  
Vol 122 (2) ◽  
pp. 519-526 ◽  
Author(s):  
K.-L. Kolho ◽  
I. Huhtaniemi

ABSTRACT Suppression of neonatal rat pituitary-testis function by gonadotrophin-releasing hormone (GnRH) antagonists results in delayed sexual maturation and infertility. Since the mechanism is not understood, the acute effects of a GnRH antagonist on gonadotrophin secretion in neonatal male rats has been studied in more detail. Treatment with a GnRH antagonist analogue, N-Ac-d-Nal(2)1,d-p-Cl-Phe2,d-Trp3,d-hArg(ET2)6,d-Ala10-GnRH (2 mg/kg per day) on days 1–10 of life had prolonged effects on gonadotrophin secretion; serum LH and FSH recovered in 1 week, but the pituitary content took 2 weeks to recover. Likewise, LH and FSH responses to acute in-vivo stimulation with a GnRH agonist were still suppressed 1 week after the treatment. Interestingly, a rebound (86% increase) in basal serum FSH was found 16 days after treatment with the antagonist. Whether testis factors influence gonadotrophin secretion during treatment with the GnRH antagonist and/or in the subsequent recovery period was also assessed. Neonatal rats were castrated on days 1, 5 or 10 of the 10-day period of antagonist treatment. Orchidectomy on days 1 and 5 only marginally affected gonadotrophin secretion. When orchidectomy was performed at the beginning of the recovery period, no effects on pituitary recovery were seen within 1 week of castration. After 16 days, serum LH and FSH in the antagonist-treated and control castrated rats were equally increased but the pituitary contents of the antagonist-treated rats were still suppressed. Finally, the effect of testosterone treatment on the recovery of gonadotrophin secretion after antagonist suppression was studied in intact and orchidectomized animals. The rats were implanted with testosterone capsules for 7 days after treatment with the GnRH antagonist in the neonatal period. Testosterone suppressed pituitary LH contents similarly in all groups of animals, but had no effects on serum LH. Paradoxically, serum FSH was suppressed 50% by testosterone in intact and castrated antagonist-treated rats and in castrated controls but not in intact controls. These findings suggest that suppression of FSH by testosterone is only seen in neonatal animals with low endogenous levels of this androgen, whether due to GnRH antagonist treatment or castration. It is concluded that neonatal treatment with a GnRH antagonist results in prolonged suppression of LH and FSH secretion, that testis factors play only a minor role in pituitary modulation during the antagonist suppression and that more disturbances are observed in the post-treatment recovery of FSH secretion than in that of LH. Journal of Endocrinology (1989) 122, 519–526


1991 ◽  
Vol 129 (3) ◽  
pp. 363-370 ◽  
Author(s):  
S. Khurshid ◽  
G. F. Weinbauer ◽  
E. Nieschlag

ABSTRACT The aim of the present investigation was to investigate the effects of testosterone on basal and gonadotrophin-releasing hormone (GnRH)-stimulated gonadotrophin secretion in the presence and absence of a GnRH antagonist in a non-human primate model (Macaca fascicularis). Orchidectomized animals were used in order to avoid interference by testicular products other than testosterone involved in gonadotrophin feedback. Concomitant and delayed administration of testosterone at doses that provided serum levels either within the intact range (study 1) or markedly above that range (study 2) did not influence the suppression of basal gonadotrophin release induced by the GnRH antagonist during a 15-day period. To assess the possible effects of testosterone treatment at the pituitary level (study 3) GnRH stimulation tests (500 μg) were performed before and on days 8 and 15 of treatment with high-dose testosterone and GnRH antagonist alone or in combination. Testosterone alone abolished the gonadotrophin responses to exogenous GnRH observed under pretreatment conditions. With GnRH antagonist alone, an increased responsiveness (P <0·05) to GnRH was seen on day 8 and a similar response compared with pretreatment on day 15. Following combined treatment with GnRH antagonist and testosterone, GnRH-induced gonadotrophin secretion was consistently lower compared with that after GnRH antagonist alone (P <0·05), but was increased compared with that after testosterone alone (P<0·05). Thus, in the presence of a GnRH antagonist the feedback action of testosterone on LH and FSH was diminished. The present work in GnRH antagonist-treated orchidectomized monkeys demonstrates that (I) unlike in rats, testosterone fails to stimulate FSH secretion selectively, (II) the negative feedback action of testosterone on GnRH-stimulated LH and FSH secretion is altered in the presence of a GnRH antagonist and (III) GnRH antagonists induce a transient period of increased responsiveness of gonadotrophic hormone release to exogenous GnRH. The observation that a GnRH antagonist reduced the feedback effects of testosterone suggests that testosterone action on pituitary gonadotrophin release, at least in part, is mediated via hypothalamic GnRH. Journal of Endocrinology (1991) 129, 363–370


1992 ◽  
Vol 8 (2) ◽  
pp. 109-118 ◽  
Author(s):  
J. Brooks ◽  
W. J. Crow ◽  
J. R. McNeilly ◽  
A. S. McNeilly

ABSTRACT The modulation of FSH secretion at the beginning and middle of the follicular phase of the cycle represents the key event in the growth and selection of the preovulatory follicle. However, the mechanisms that operate within the pituitary gland to control the increased release of FSH and its subsequent inhibition in vivo remain unclear. Treatment of ewes with bovine follicular fluid (bFF) during the luteal phase has been previously shown to suppress the plasma concentrations of FSH and, following cessation of treatment on day 11, a rebound release of FSH occurs on days 12 and 13. When luteal regression is induced on day 12, this hypersecretion of FSH results in an increase in follicle growth and ovulation rate. To investigate the mechanisms involved in the control of FSH secretion, ewes were treated with twice daily s.c. injections of 5 ml bFF on days 3–11 of the oestrous cycle and luteal regression was induced on day 12 with prostaglandin (PG). The treated ewes and their controls were then killed on day 11 (luteal), or 16 or 32h after PG and their pituitaries removed and halved. One half was analysed for gonadotrophin and gonadotrophin-releasing hormone (GnRH) receptor content. Total pituitary RNA was extracted from the other half and subjected to Northern analysis using probes for FSH-β, LH-β and common α subunit. Frequent blood samples were taken and assayed for gonadotrophins. FSH secretion was significantly (P<0.01) reduced during bFF treatment throughout the luteal phase and then significantly (P<0.01) increased after cessation of treatment, with maximum secretion being reached 18– 22h after PG, and then declining towards control values by 32h after PG. A similar pattern of LH secretion was seen after bFF treatment. Pituitary FSH content was significantly (P<0.05) reduced by bFF treatment at all stages of the cycle. No difference in the pituitary LH content was seen. The increase in GnRH receptor content after PG in the controls was delayed in the treated animals. Analysis of pituitary mRNA levels revealed that bFF treatment significantly (P<0.01) reduced FSH-β mRNA levels in the luteal phase. Increased levels of FSH-β, LH-β and α subunit mRNA were seen 16h after PG in the bFF-treated animals, at the time when FSH and LH secretion from the pituitary was near maximum. These results suggest that the rebound release of FSH after treatment with bFF (as a source of inhibin) is related to a rapid increase in FSH-β mRNA, supporting the concept that the rate of FSH release is directly related to the rate of synthesis.


2011 ◽  
Vol 23 (6) ◽  
pp. 780 ◽  
Author(s):  
Magdalena Ciechanowska ◽  
Magdalena Łapot ◽  
Tadeusz Malewski ◽  
Krystyna Mateusiak ◽  
Tomasz Misztal ◽  
...  

There is no information in the literature regarding the effect of corticotropin-releasing hormone (CRH) on genes encoding gonadotrophin-releasing hormone (GnRH) and the GnRH receptor (GnRHR) in the hypothalamus or on GnRHR gene expression in the pituitary gland in vivo. Thus, the aim of the present study was to investigate, in follicular phase ewes, the effects of prolonged, intermittent infusion of small doses of CRH or its antagonist (α-helical CRH 9-41; CRH-A) into the third cerebral ventricle on GnRH mRNA and GnRHR mRNA levels in the hypothalamo–pituitary unit and on LH secretion. Stimulation or inhibition of CRH receptors significantly decreased or increased GnRH gene expression in the hypothalamus, respectively, and led to different responses in GnRHR gene expression in discrete hypothalamic areas. For example, CRH increased GnRHR gene expression in the preoptic area, but decreased it in the hypothalamus/stalk median eminence and in the anterior pituitary gland. In addition, CRH decreased LH secretion. Blockade of CRH receptors had the opposite effect on GnRHR gene expression. The results suggest that activation of CRH receptors in the hypothalamus of follicular phase ewes can modulate the biosynthesis and release of GnRH through complex changes in the expression of GnRH and GnRHR genes in the hypothalamo–anterior pituitary unit.


1988 ◽  
Vol 117 (1) ◽  
pp. 43-49 ◽  
Author(s):  
J. A. King ◽  
J. S. Davidson ◽  
R. P. Millar

ABSTRACT The presence of two endogenous forms of gonadotrophin-releasing hormone (GnRH) in the chicken hypothalamus (chicken GnRH-I ([Gln8]GnRH) and chicken GnRH-II ([His5,Trp7,Tyr8]GnRH)), and the stimulation of gonadotrophins by both forms, suggests the possible existence of GnRH receptor subtypes and gonadotroph subtypes in the chicken pituitary. This question was investigated by assessing the effects of various combinations of the two known forms of chicken hypothalamic GnRH and antagonist analogues of GnRH on LH release from dispersed chicken anterior pituitary cells in both static and perifused systems. The relative inhibition of chicken GnRH-I-stimulated and chicken GnRH-II-stimulated LH release by 12 GnRH antagonists did not differ significantly, suggesting a single GnRH receptor type. Chicken GnRH-II was approximately sixfold more potent than chicken GnRH-I in releasing LH. Release of LH in response to maximal doses of chicken GnRH-I and chicken GnRH-II and to a mixture of both was similar and the two peptides were not additive in their effects, consistent with the presence of a single type of LH gonadotroph and a GnRH receptor which binds both forms of GnRH. Each form of GnRH desensitized cells to subsequent stimulation with the other form, providing additional evidence for a single type of LH gonadotroph. These findings suggest that chicken GnRH-I and -II stimulate gonadotrophin release through a single GnRH receptor type on a single class of LH gonadotroph in the chicken pituitary. J. Endocr. (1988) 117,43–49


1985 ◽  
Vol 104 (3) ◽  
pp. 345-354 ◽  
Author(s):  
F. Bint Akhtar ◽  
G. F. Weinbauer ◽  
E. Nieschlag

ABSTRACT The effects of a potent gonadotrophin-releasing hormone (GnRH) antagonist, (N-Ac-d-p-Cl-Phe1,2,d-Trp3,d-Arg6,d-Ala10)-GnRH (Org 30276), on pituitary and testicular function of adult macaque monkeys were investigated. After a study to find the correct dose in castrated monkeys, five intact adult male animals were treated with daily s.c. injections of 5 mg antagonist for 9 weeks. The treatment resulted in an immediate decline in serum LH and testosterone in three out of five animals. The two hormones remained suppressed during the 9-week treatment period. Testosterone and LH responses to a bolus injection of GnRH (50 μg i.v.) were blunted or abolished during the antagonist treatment. Testicular volumes decreased markedly and ejaculates obtained at the end of treatment were azoospermic or contained only few dead sperm. Histological examination of the testes showed complete disruption of seminiferous epithelium in these animals. A decrease of body weight was observed in the treated animals. When the treatment was ceased, all inhibitory effects of GnRH antagonists were reversible. In the other two animals no consistent suppression of pituitary or testicular function could be observed during this period, nor was a doubling of the treatment dose for a further 8 weeks capable of fully suppressing endocrine and seminal parameters in these monkeys. It is concluded that GnRH antagonist treatment is capable of rapidly decreasing serum LH and testosterone and disrupting spermatogenesis in this primate species. Suppression effected by antagonist treatment is more rapid than that caused by GnRH agonists. The individual responses to the tested doses, however, vary markedly. J. Endocr. (1985) 104, 345–354


2016 ◽  
Vol 28 (11) ◽  
pp. 1686 ◽  
Author(s):  
K. Ballantyne ◽  
S. T. Anderson ◽  
M. Pyne ◽  
V. Nicolson ◽  
A. Mucci ◽  
...  

The present study examined the effectiveness of the gonadotrophin-releasing hormone (GnRH) antagonist azaline B to suppress plasma LH and 17β-oestradiol concentrations in koalas and its potential application for oestrous synchronisation. In Experiment 1, single subcutaneous injections of azaline B successfully blocked the LH response to exogenous mammalian (m) GnRH in a dose-dependent manner; specifically, 0 mg (n = 4) did not suppress the LH response, 1 mg azaline B (n = 6) suppressed the LH response for 24 h (P < 0.05), 3.3 mg azaline B (n = 8) suppressed the LH response significantly in all animals only for 3 h (P < 0.05), although in half the animals LH remained suppressed for up to 3 days, and 10 mg azaline B (n = 4) suppressed the LH response for 7 days (P < 0.05). In Experiment 2, daily 1 mg, s.c., injections of azaline B over a 10-day period during seasonal anoestrus (June–July; n = 6) suppressed (P < 0.01) the LH response to mGnRH consecutively over the 10-day treatment period and, 4 days after cessation of treatment, the LH response had not recovered. Experiment 3 was designed to test the efficacy of daily 1 mg, s.c., azaline B over 10 days to suppress plasma LH and 17β-oestradiol concentrations and ultimately synchronise timed return to oestrus during the breeding season. Although azaline B treatment did not suppress basal LH or 17β-oestradiol, oestrus was delayed in all treated females by 24.2 days, but with high variability (range 9–39 days). Overall, the present study demonstrates that the GnRH antagonist azaline B is able to inhibit the LH response in koalas to exogenous mGnRH and successfully delay the return to oestrus. However, although azaline B clearly disrupts folliculogenesis, it has not been able to effectively synchronise return to oestrus in the koala.


1994 ◽  
Vol 142 (3) ◽  
pp. 485-495 ◽  
Author(s):  
G F Weinbauer ◽  
A Limberger ◽  
H M Behre ◽  
E Nieschlag

Abstract The combination of gonadotrophin-releasing hormone (GnRH) antagonist and delayed testosterone substitution provides a promising approach towards male contraception. However, the GnRH antagonists used clinically so far cause side-effects and have to be administered continuously. We therefore used the non-human primate model to see whether the GnRH antagonist cetrorelix (which exhibits a favourable benefit-to-risk ratio in terms of anti-gonadotrophic action in normal men) induces complete and reversible suppression of spermatogenesis and whether GnRH antagonist-induced suppression of spermatogenesis can be maintained by testosterone alone. Four groups of adult cynomolgus monkeys (Macaca fascicularis; five per group) were injected daily with 450 μg cetrorelix/kg ([N-acetyl-d-2-naphthyl-Ala1, d-4-chloro-Phe2, d-pyridyl-Ala3, d-Cit6, d-Ala10]-GnRH). Group 1 received the GnRH antagonist for 7 weeks followed by vehicle administration for another 11 weeks; group 2 was treated with GnRH antagonist for the entire 18 weeks with each animal receiving a single testosterone implant during weeks 11–18 to restore the ejaculatory response to electrostimulation; group 3 received the GnRH antagonist for 18 weeks and testosterone buciclate (TB) was injected during week 6 of GnRH antagonist treatment; group 4 was subjected to GnRH antagonist administration for 7 weeks and received TB (200 mg/animal) during week 6. Under GnRH antagonist treatment alone serum concentrations of testosterone were suppressed. TB maintained testosterone levels two- to fourfold above baseline levels in groups 3 and 4 and prevented the recovery of LH secretion for about 20 weeks after GnRH antagonist withdrawal, whereas inhibin levels increased significantly from week 8 onwards. Group 2 animals were azoospermic during weeks 12–18 of GnRH antagonist administration. The TB-replaced groups developed azoospermia or became severely oligozoospermic. Quantitation of cell numbers by flow cytometry during weeks 6 and 18 revealed that TB (groups 3 and 4) had prevented a further decline of germ cell production compared with group 2 but had maintained the spermatogenic status present at week 6 (onset of TB substitution). All inhibitory effects of cetrorelix and/or TB were reversible after cessation of treatment. These findings demonstrate that cetrorelix reversibly inhibits spermatogenesis in a non-human primate model. Although TB maintained the GnRH antagonist-induced suppression of spermatogenesis, azoospermia was not achieved. This latter effect may reflect either a direct spermatogenesis-supporting effect of the high dose of TB or the partial recovery of inhibin secretion (indirectly reflecting FSH secretion) or a combination of both. Thus, maintenance of GnRH antagonist-induced spermatogenic inhibition by testosterone alone appears theoretically possible. Whether this regimen will, however, permit the induction of sustained azoospermia remains to be seen, preferably in human studies. Journal of Endocrinology (1994) 142, 485–495


1980 ◽  
Vol 58 (2) ◽  
pp. 220-222 ◽  
Author(s):  
M. Wilkinson ◽  
W. H. Moger ◽  
Liisa K. Selin

Porcine follicular fluid (PFF) contains a factor (inhibin or folliculostatin) which is reported to selectively inhibit the secretion of follicle-stimulating hormone (FSH) from the anterior pituitary gland. Chronic treatment of hemicastrate immature rats with PFF is able to partially inhibit the FSH-mediated hypertrophy of the remaining testis. However, the pituitaries from PFF-treated rats are paradoxically very sensitive to stimulation with gonadotrophin-releasing hormone (GnRH) and secrete significantly more FSH than control glands. Furthermore, this increased sensitivity results in a large increase in luteinizing hormone (LH) secretion. These observations suggest that under certain circumstances PFF is not selective for FSH and that it surprisingly stimulates rather than inhibits gonadotrophin secretion.


Sign in / Sign up

Export Citation Format

Share Document