Cellular interactions in the hormonal induction of α2u-globulin in rat liver

1986 ◽  
Vol 111 (2) ◽  
pp. 205-NP ◽  
Author(s):  
F. H. Sarkar ◽  
M. A. Mancini ◽  
A. C. Nag ◽  
A. K. Roy

ABSTRACT The role of hepatocellular interaction in the androgen-dependent synthesis of rat α2u-globulin was examined by immunochemical analysis of liver sections. Both after androgen administration to the ovariectomized female and during puberty in the male, only a subpopulation of hepatocytes became competent to synthesize α2u-globulin. These competent hepatocytes first appeared as discontinuous patches along the wall of the central vein. After the formation of a confluent layer around the central vein, cellular competency was seen to propagate toward the periportal direction through the cords of hepatic cells. Although the periportal progression of cellular competency for the synthesis of α2u-globulin appeared to be an all-or-none phenomenon, it did not require cell division. From these results we conclude that certain components of the central vein are necessary for the hormonal induction of α2u-globulin in the rat liver. We also propose that a primary endocrine influence on the hepatic vein results in the production of a secondary paracrine mediator which can trigger the synthesis of α2u-globulin in adjacent hepatocytes. Perivenous to periportal flow of this putative secondary mediator can explain cell recruitment for the synthesis of α2u-globulin along the hepatic cords. J. Endocr. (1986) 111, 205–208

2020 ◽  
Vol 15 (1) ◽  
pp. 326-330
Author(s):  
Xing Liu ◽  
Bin Shi

AbstractLung cancer is one of the most prevalent malignancies worldwide. Local recurrence and distant metastasis remain the major causes of treatment failure. It has been recognized that the process of tumor growth and metastasis involves multiple interactions between tumor and host. Various biomarkers have been used for predicting tumor recurrence, metastasis, and prognosis in patients with lung cancer. However, these biomarkers are still controversial and require further validation. The relationship between malignancy and coagulation system disorders has been explored for more than a century. Fibrinogen is the most abundant plasma coagulation factor synthesized mainly by hepatic cells. Increased plasma fibrinogen levels were observed in various carcinomas such as gastric cancer, colon cancer, and pancreatic cancer. Recent studies have also investigated the role of fibrinogen in patients with lung cancer. This review aimed to address the role of fibrinogen in lung cancer.


2003 ◽  
Vol 124 (4) ◽  
pp. A719-A720
Author(s):  
Yuji Takamatsu ◽  
Kazuo Shimada ◽  
Koji Yamaguchi ◽  
Kazuo Chijiiwa ◽  
Masao Tanaka

1994 ◽  
Vol 35 (4) ◽  
pp. 709-720
Author(s):  
S Shafi ◽  
S E Brady ◽  
A Bensadoun ◽  
R J Havel

2021 ◽  
Vol 22 (10) ◽  
pp. 5328
Author(s):  
Miao Ma ◽  
Margaux Lustig ◽  
Michèle Salem ◽  
Dominique Mengin-Lecreulx ◽  
Gilles Phan ◽  
...  

One of the major families of membrane proteins found in prokaryote genome corresponds to the transporters. Among them, the resistance-nodulation-cell division (RND) transporters are highly studied, as being responsible for one of the most problematic mechanisms used by bacteria to resist to antibiotics, i.e., the active efflux of drugs. In Gram-negative bacteria, these proteins are inserted in the inner membrane and form a tripartite assembly with an outer membrane factor and a periplasmic linker in order to cross the two membranes to expulse molecules outside of the cell. A lot of information has been collected to understand the functional mechanism of these pumps, especially with AcrAB-TolC from Escherichia coli, but one missing piece from all the suggested models is the role of peptidoglycan in the assembly. Here, by pull-down experiments with purified peptidoglycans, we precise the MexAB-OprM interaction with the peptidoglycan from Escherichia coli and Pseudomonas aeruginosa, highlighting a role of the peptidoglycan in stabilizing the MexA-OprM complex and also differences between the two Gram-negative bacteria peptidoglycans.


Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 905
Author(s):  
Estela Ruiz-Baca ◽  
Armando Pérez-Torres ◽  
Yolanda Romo-Lozano ◽  
Daniel Cervantes-García ◽  
Carlos A. Alba-Fierro ◽  
...  

The role of immune cells associated with sporotrichosis caused by Sporothrix schenckii is not yet fully clarified. Macrophages through pattern recognition receptors (PRRs) can recognize pathogen-associated molecular patterns (PAMPs) of Sporothrix, engulf it, activate respiratory burst, and secrete pro-inflammatory or anti-inflammatory biological mediators to control infection. It is important to consider that the characteristics associated with S. schenckii and/or the host may influence macrophage polarization (M1/M2), cell recruitment, and the type of immune response (1, 2, and 17). Currently, with the use of new monocyte-macrophage cell lines, it is possible to evaluate different host–pathogen interaction processes, which allows for the proposal of new mechanisms in human sporotrichosis. Therefore, in order to contribute to the understanding of these host–pathogen interactions, the aim of this review is to summarize and discuss the immune responses induced by macrophage-S. schenckii interactions, as well as the PRRs and PAMPs involved during the recognition of S. schenckii that favor the immune evasion by the fungus.


Sign in / Sign up

Export Citation Format

Share Document