scholarly journals The Role of Macrophages in the Host’s Defense against Sporothrix schenckii

Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 905
Author(s):  
Estela Ruiz-Baca ◽  
Armando Pérez-Torres ◽  
Yolanda Romo-Lozano ◽  
Daniel Cervantes-García ◽  
Carlos A. Alba-Fierro ◽  
...  

The role of immune cells associated with sporotrichosis caused by Sporothrix schenckii is not yet fully clarified. Macrophages through pattern recognition receptors (PRRs) can recognize pathogen-associated molecular patterns (PAMPs) of Sporothrix, engulf it, activate respiratory burst, and secrete pro-inflammatory or anti-inflammatory biological mediators to control infection. It is important to consider that the characteristics associated with S. schenckii and/or the host may influence macrophage polarization (M1/M2), cell recruitment, and the type of immune response (1, 2, and 17). Currently, with the use of new monocyte-macrophage cell lines, it is possible to evaluate different host–pathogen interaction processes, which allows for the proposal of new mechanisms in human sporotrichosis. Therefore, in order to contribute to the understanding of these host–pathogen interactions, the aim of this review is to summarize and discuss the immune responses induced by macrophage-S. schenckii interactions, as well as the PRRs and PAMPs involved during the recognition of S. schenckii that favor the immune evasion by the fungus.

2017 ◽  
Vol 808 ◽  
pp. 8-13 ◽  
Author(s):  
Mehdi Taghavi ◽  
Alireza Khosravi ◽  
Esmaeil Mortaz ◽  
Donya Nikaein ◽  
Seyyed Shamsadin Athari

2021 ◽  
Vol 12 ◽  
Author(s):  
Yaoyao Xia ◽  
Yikun Li ◽  
Xiaoyan Wu ◽  
Qingzhuo Zhang ◽  
Siyuan Chen ◽  
...  

Iron fine-tunes innate immune responses, including macrophage inflammation. In this review, we summarize the current understanding about the iron in dictating macrophage polarization. Mechanistically, iron orchestrates macrophage polarization through several aspects, including cellular signaling, cellular metabolism, and epigenetic regulation. Therefore, iron modulates the development and progression of multiple macrophage-associated diseases, such as cancer, atherosclerosis, and liver diseases. Collectively, this review highlights the crucial role of iron for macrophage polarization, and indicates the potential application of iron supplementation as an adjuvant therapy in different inflammatory disorders relative to the balance of macrophage polarization.


Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1747 ◽  
Author(s):  
Daniel Humphreys ◽  
Mohamed ElGhazaly ◽  
Teresa Frisan

Damage to our genomes triggers cellular senescence characterised by stable cell cycle arrest and a pro-inflammatory secretome that prevents the unrestricted growth of cells with pathological potential. In this way, senescence can be considered a powerful innate defence against cancer and viral infection. However, damage accumulated during ageing increases the number of senescent cells and this contributes to the chronic inflammation and deregulation of the immune function, which increases susceptibility to infectious disease in ageing organisms. Bacterial and viral pathogens are masters of exploiting weak points to establish infection and cause devastating diseases. This review considers the emerging importance of senescence in the host–pathogen interaction: we discuss the pathogen exploitation of ageing cells and senescence as a novel hijack target of bacterial pathogens that deploys senescence-inducing toxins to promote infection. The persistent induction of senescence by pathogens, mediated directly through virulence determinants or indirectly through inflammation and chronic infection, also contributes to age-related pathologies such as cancer. This review highlights the dichotomous role of senescence in infection: an innate defence that is exploited by pathogens to cause disease.


2019 ◽  
Vol 20 (18) ◽  
pp. 4343 ◽  
Author(s):  
Irina Lyapina ◽  
Anna Filippova ◽  
Igor Fesenko

Plants have evolved a sophisticated innate immune system to cope with a diverse range of phytopathogens and insect herbivores. Plasma-membrane-localized pattern recognition receptors (PRRs), such as receptor-like kinases (RLK), recognize special signals, pathogen- or damage-associated molecular patterns (PAMPs or DAMPs), and trigger immune responses. A growing body of evidence shows that many peptides hidden in both plant and pathogen functional protein sequences belong to the group of such immune signals. However, the origin, evolution, and release mechanisms of peptide sequences from functional and nonfunctional protein precursors, known as cryptic peptides, are largely unknown. Various special proteases, such as metacaspase or subtilisin-like proteases, are involved in the release of such peptides upon activation during defense responses. In this review, we discuss the roles of cryptic peptide sequences hidden in the structure of functional proteins in plant defense and plant-pathogen interactions.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 152
Author(s):  
Barbara Balestrieri ◽  
David Di Costanzo ◽  
Daniel F. Dwyer

Macrophages have diverse functions in the pathogenesis, resolution, and repair of inflammatory processes. Elegant studies have elucidated the metabolomic and transcriptomic profiles of activated macrophages. However, the versatility of macrophage responses in inflammation is likely due, at least in part, to their ability to rearrange their repertoire of bioactive lipids, including fatty acids and oxylipins. This review will describe the fatty acids and oxylipins generated by macrophages and their role in type 1 and type 2 immune responses. We will highlight lipidomic studies that have shaped the current understanding of the role of lipids in macrophage polarization.


Sign in / Sign up

Export Citation Format

Share Document