Role of cell–cell contact in the preservation of differentiation and response to thyrotrophin in cultured porcine thyroid cells

1987 ◽  
Vol 113 (2) ◽  
pp. 223-NP ◽  
Author(s):  
A. S. Yap ◽  
J. R. Bourke ◽  
S. W. Manley

ABSTRACT Cultured porcine thyroid cells did not reassociate into functional follicles in the presence of TSH unless the initial seeding density was adequate. At 0·2 × 106 cells/35 mm diameter culture dish the cells rapidly formed a monolayer even in the presence of TSH (128 μu./ml), and radioiodide uptake was not significantly increased compared with that in control cells. Seeding densities of 1–3 × 106 cells/dish resulted in cultures which responded to TSH with follicular development and increased radioiodide uptake. A cell-free membrane fraction of thyroid homogenate restored the ability of cultures seeded at low densities to respond to TSH with development of follicular morphology and increased radioiodide uptake. Delaying the addition of TSH by 48 h markedly reduced the stimulation of follicular development and radioiodide uptake of cultures. Addition of membrane fractions, or an alkali-soluble fraction of membranes, at zero time improved the responses to TSH added after a 48-h delay. It was concluded that maintenance of differentiation and of TSH-responsiveness in cultured thyroid cells was influenced by cell–cell contact. J. Endocr. (1987) 113, 223–229

2000 ◽  
Vol 113 (3) ◽  
pp. 391-400 ◽  
Author(s):  
D.A. Bleijs ◽  
M.E. Binnerts ◽  
S.J. van Vliet ◽  
C.G. Figdor ◽  
Y. van Kooyk

Although ICAM-3 is implicated in both adhesion and signal transduction events of leukocytes, its low affinity for LFA-1 compared to other ligands of LFA-1 has puzzled many investigators. Here we investigated the role of ICAM-3 in supporting LFA-1-mediated ICAM-1 binding and subsequently cell signaling. We observed that although ICAM-3 binds poorly to LFA-1 expressed on resting T cells, it specifically facilitates and increases LFA-1-mediated adhesion to the high affinity ligand of LFA-1, ICAM-1. We demonstrate that low-affinity binding of LFA-1 to ICAM-3 together with ICAM-1 alters the cell surface distribution of LFA-1 dramatically, inducing large clusters of LFA-1 that facilitate ICAM-1 binding after LFA-1 activation. We found that LFA-1-mediated ICAM-1 cell-cell interactions such as T cell proliferation greatly depend on low affinity LFA-1/ICAM-3 interactions that enhance stable LFA-1/ICAM-1 cell-cell contact. Taken together, these data demonstrate that low affinity LFA-1 binding to ICAM-3 regulates strong LFA-1/ICAM-1-mediated adhesion by driving LFA-1 into clusters to facilitate cell-cell interactions that take place in the immune system.


Neuroscience ◽  
2018 ◽  
Vol 375 ◽  
pp. 135-148 ◽  
Author(s):  
Pauli M. Turunen ◽  
Lauri M. Louhivuori ◽  
Verna Louhivuori ◽  
Jyrki P. Kukkonen ◽  
Karl E. Åkerman
Keyword(s):  

2005 ◽  
Vol 68 (2) ◽  
pp. 542-551 ◽  
Author(s):  
Eishin Yaoita ◽  
Hidetake Kurihara ◽  
Yutaka Yoshida ◽  
Tsutomu Inoue ◽  
Asako Matsuki ◽  
...  

2018 ◽  
Author(s):  
Kai Liu ◽  
Brian Chu ◽  
Jay Newby ◽  
Elizabeth L. Read ◽  
John Lowengrub ◽  
...  

AbstractIn many biological settings, two or more cells come into physical contact to form a cell-cell interface. In some cases, the cell-cell contact must be transient, forming on timescales of seconds. One example is offered by the T cell, an immune cell which must attach to the surface of other cells in order to decipher information about disease. The aspect ratio of these interfaces (tens of nanometers thick and tens of micrometers in diameter) puts them into the thin-layer limit, or “lubrication limit”, of fluid dynamics. A key question is how the receptors and ligands on opposing cells come into contact. What are the relative roles of thermal undulations of the plasma membrane and deterministic forces from active filopodia? We use a computational fluid dynamics algorithm capable of simulating 10-nanometer-scale fluid-structure interactions with thermal fluctuations up to seconds-and microns-scales. We use this to simulate two opposing membranes, variously including thermal fluctuations, active forces, and membrane permeability. In some regimes dominated by thermal fluctuations, proximity is a rare event, which we capture by computing mean first-passage times using a Weighted Ensemble rare-event computational method. Our results demonstrate that the time-to-contact increases for smaller cell-cell distances (where the thin-layer effect is strongest), leading to an optimal initial cell-cell separation for fastest receptor-ligand binding. We reproduce a previous experimental observation that fluctuation spatial scales are largely unaffected, but timescales are dramatically slowed, by the thin-layer effect. We also find that membrane permeability would need to be above physiological levels to abrogate the thin-layer effect.Author summaryThe elastohydrodynamics of water in and around cells is playing an increasingly recognized role in biology. In this work, we investigate the flow of extracellular fluid in between cells during the formation of a cell-cell contact, to determine whether its necessary evacuation as the cells approach is a rate-limiting step before molecules on either cell can interact. To overcome the computational challenges associated with simulating fluid in this mechanically soft, stochastic and high-aspect-ratio environment, we extend a computational framework where the cell plasma membranes are treated as immersed boundaries in the fluid, and combine this with computational methods for simulating stochastic rare events in which an ensemble of simulations are given weights according to their probability. We find that the internal dynamics of the membranes has speeds in approximately microseconds, but that as the cells approach, a new slow timescale of approximately milliseconds is introduced. Thermal undulations nor typical amounts of membrane permeability can overcome the timescale, but active forces, e.g., from the cytoskeleton, can. Our results suggest an explanation for differences in molecular interactions in live cells compared to in vitro reconstitution experiments.


1994 ◽  
Vol 72 (03) ◽  
pp. 450-456 ◽  
Author(s):  
Norma Maugeri ◽  
Virgilio Evangelista ◽  
Antonio Celardo ◽  
Giuseppe Dell’Elba ◽  
Nicola Martelli ◽  
...  

SummaryIn PMN/platelet suspensions stimulated by fMLP giant mixed aggregates are formed and TxB2 and LTC4 are synthesized as the result of the cooperation in the arachidonic acid (AA) metabolism during cell/cell contact. PMN-derived cathepsin G induced the expression of P-selectin on platelet surface. GE12, an antibody against P-selectin, significantly reduced mixed cell aggregates. GE12 did not affect platelet aggregation induced by PMN-derived supernatants, indicating that the inhibitory effect of GE12 on mixed cell aggregation depends on inhibition of PMN/platelet adhesion. GE12 significantly reduced TxB2 and LTC4 production in PMN/platelet mixed cell suspensions stimulated by fMLP. As previously reported, synthesis of 3H-TxB2 in 3H-AA-labeled PMN/unlabeled platelets indicates that platelets utilize 3H-AA from PMN. 3H-LTC4 production in unlabeled PMN/3H-AA-labeled platelets indicates that bidirectional routes are utilized in this system for LTC4 synthesis. GE12 significantly reduced 3H-TxB2 and 3H-LTC4 synthesis. These results show that cathepsin G released by activated PMN induces the expression of P-selectin on platelet membrane: this adhesive glycoprotein modulates cell-cell contact and transcellular metabolism of AA.


2019 ◽  
Vol 15 (4) ◽  
pp. e1006352 ◽  
Author(s):  
Kai Liu ◽  
Brian Chu ◽  
Jay Newby ◽  
Elizabeth L. Read ◽  
John Lowengrub ◽  
...  

2019 ◽  
Vol 244 (15) ◽  
pp. 1303-1312 ◽  
Author(s):  
Beata Machnicka ◽  
Renata Grochowalska ◽  
Dżamila M Bogusławska ◽  
Aleksander F Sikorski

Spectrins are proteins that are responsible for many aspects of cell function and adaptation to changing environments. Primarily the spectrin-based membrane skeleton maintains cell membrane integrity and its mechanical properties, together with the cytoskeletal network a support cell shape. The occurrence of a variety of spectrin isoforms in diverse cellular environments indicates that it is a multifunctional protein involved in numerous physiological pathways. Participation of spectrin in cell–cell and cell–extracellular matrix adhesion and formation of dynamic plasma membrane protrusions and associated signaling events is a subject of interest for researchers in the fields of cell biology and molecular medicine. In this mini-review, we focus on data concerning the role of spectrins in cell surface activities such as adhesion, cell–cell contact, and invadosome formation. We discuss data on different adhesion proteins that directly or indirectly interact with spectrin repeats. New findings support the involvement of spectrin in cell adhesion and spreading, formation of lamellipodia, and also the participation in morphogenetic processes, such as eye development, oogenesis, and angiogenesis. Here, we review the role of spectrin in cell adhesion and cell–cell contact.Impact statementThis article reviews properties of spectrins as a group of proteins involved in cell surface activities such as, adhesion and cell–cell contact, and their contribution to morphogenesis. We show a new area of research and discuss the involvement of spectrin in regulation of cell–cell contact leading to immunological synapse formation and in shaping synapse architecture during myoblast fusion. Data indicate involvement of spectrins in adhesion and cell–cell or cell–extracellular matrix interactions and therefore in signaling pathways. There is evidence of spectrin’s contribution to the processes of morphogenesis which are connected to its interactions with adhesion molecules, membrane proteins (and perhaps lipids), and actin. Our aim was to highlight the essential role of spectrin in cell–cell contact and cell adhesion.


Sign in / Sign up

Export Citation Format

Share Document