scholarly journals The role of spectrin in cell adhesion and cell–cell contact

2019 ◽  
Vol 244 (15) ◽  
pp. 1303-1312 ◽  
Author(s):  
Beata Machnicka ◽  
Renata Grochowalska ◽  
Dżamila M Bogusławska ◽  
Aleksander F Sikorski

Spectrins are proteins that are responsible for many aspects of cell function and adaptation to changing environments. Primarily the spectrin-based membrane skeleton maintains cell membrane integrity and its mechanical properties, together with the cytoskeletal network a support cell shape. The occurrence of a variety of spectrin isoforms in diverse cellular environments indicates that it is a multifunctional protein involved in numerous physiological pathways. Participation of spectrin in cell–cell and cell–extracellular matrix adhesion and formation of dynamic plasma membrane protrusions and associated signaling events is a subject of interest for researchers in the fields of cell biology and molecular medicine. In this mini-review, we focus on data concerning the role of spectrins in cell surface activities such as adhesion, cell–cell contact, and invadosome formation. We discuss data on different adhesion proteins that directly or indirectly interact with spectrin repeats. New findings support the involvement of spectrin in cell adhesion and spreading, formation of lamellipodia, and also the participation in morphogenetic processes, such as eye development, oogenesis, and angiogenesis. Here, we review the role of spectrin in cell adhesion and cell–cell contact.Impact statementThis article reviews properties of spectrins as a group of proteins involved in cell surface activities such as, adhesion and cell–cell contact, and their contribution to morphogenesis. We show a new area of research and discuss the involvement of spectrin in regulation of cell–cell contact leading to immunological synapse formation and in shaping synapse architecture during myoblast fusion. Data indicate involvement of spectrins in adhesion and cell–cell or cell–extracellular matrix interactions and therefore in signaling pathways. There is evidence of spectrin’s contribution to the processes of morphogenesis which are connected to its interactions with adhesion molecules, membrane proteins (and perhaps lipids), and actin. Our aim was to highlight the essential role of spectrin in cell–cell contact and cell adhesion.

Author(s):  
W. Mark Saltzman

The external surface of the cell consists of a phospholipid bilayer which carries a carbohydrate-rich coat called the glycocalyx; ionizable groups within the glycocalyx, such as sialic acid (N-acetyl neuraminate), contribute a net negative charge to the cell surface. Many of the carbohydrates that form the glycocalyx are bound to membrane-associated proteins. Each of these components— phospholipid bilayer, carbohydrate-rich coat, membrane-associated protein—has distinct physicochemical characteristics and is abundant. Plasma membranes contain ∼50% protein, ∼45% lipid, and ∼5% carbohydrate by weight. Therefore, each component influences cell interactions with the external environment in important ways. Cells can become attached to surfaces. The surface of interest may be geometrically complex (for example, the surface of another cell, a virus, a fiber, or an irregular object), but this chapter will focus on adhesion between a cell and a planar surface. The consequences of cell–cell adhesion are considered further in Chapter 8 (Cell Aggregation and Tissue Equivalents) and Chapter 9 (Tissue Barriers to Molecular and Cellular Transport). The consequences of cell–substrate adhesion are considered further in Chapter 7 (Cell Migration) and Chapter 12 (Cell Interactions with Polymers). Since the growth and function of many tissue-derived cells required attachment and spreading on a solid substrate, the events surrounding cell adhesion are fundamentally important. In addition, the strength of cell adhesion is an important determinant of the rate of cell migration, the kinetics of cell–cell aggregation, and the magnitude of tissue barriers to cell and molecule transport. Cell adhesion is therefore a major consideration in the development of methods and materials for cell delivery, tissue engineering, and tissue regeneration. The most stable and versatile mechanism for cell adhesion involves the specific association of cell surface glycoproteins, called receptors, and complementary molecules in the extracellular space, called ligands. Ligands may exist freely in the extracellular space, they may be associated with the extracellular matrix, or they may be attached to the surface of another cell. Cell–cell adhesion can occur by homophilic binding of identical receptors on different cells, by heterophilic binding of a receptor to a ligand expressed on the surface of a different cell, or by association of two receptors with an intermediate linker. Cell–matrix adhesion usually occurs by heterophilic binding of a receptor to a ligand attached to an insoluble element of the extracellular matrix.


2011 ◽  
Vol 435 (3) ◽  
pp. 619-628 ◽  
Author(s):  
Eija Heikkilä ◽  
Mervi Ristola ◽  
Marika Havana ◽  
Nina Jones ◽  
Harry Holthöfer ◽  
...  

Slit diaphragms are specialized junctions between glomerular epithelial cells (podocytes) that are crucial for glomerular ultrafiltration. The Ig superfamily members nephrin and Neph1 are essential components of the slit diaphragm, whereas the role of Neph1 homologue Neph3 in the slit diaphragm is unknown. In the present paper we show that Neph3 homodimerizes and heterodimerizes with nephrin and Neph1. We further investigated whether these interactions play a role in cell adhesion by using mouse L fibroblasts that lack endogenous cell-adhesion activity and found that Neph1 and Neph3 are able to induce cell adhesion alone, whereas nephrin needs to trans-interact with Neph1 or Neph3 in order to promote formation of cell–cell contacts. Tyrosine phosphorylation of nephrin was down-regulated after nephrin trans-interacted with either Neph1 or Neph3 leading to formation of cell–cell contacts. We further found that the expression of Neph3 was increased in nephrin-deficient mouse podocytes. The findings of the present paper show that nephrin and Neph1 or Neph3 trans-interactions promote cell-contact formation, suggesting that they may also function together in slit diaphragm assembly.


Author(s):  
Saswati Banerjee ◽  
Gopal Majumder

AbstractMany studies have implicated cell-surface lectins in heterologous cell-cell adhesion, but little is known about the participation of lectins in cellular adhesion in homologous cells. Here, we show the development of a cell model for investigating the direct role of a cell-surface lectin in homologous cell-cell adhesion. Parenchymal cells were isolated from caprine liver using a perfusion buffer, and dispersed in a chemically defined modified Ringer’s solution. These cells undergo autoagglutination in the presence of Ca2+. The autoagglutinated cells can be dissociated specifically with D-galactose (50 mM), which also inhibits the liver cell autoagglutination event. The blood serum protein fetuin has no effect on liver cell autoagglutination, whereas desialylated fetuin (100 μM), with its terminal D-galactose residue, showed a high affinity for blocking the autoagglutination event. The data demonstrates the occurrence of a Ca2+-dependent D-galactose-specific lectin and a lectin receptor on the parenchymal cells. Furthermore, it shows that the observed autoagglutination event is caused by the interaction of the cell-surface lectin with its receptor on the neighbouring homologous cells. The data supports the view that homologous cell-cell contact in mammalian tissues is triggered by such lectin-receptor interaction and that the previously reported cell-surface adhesive proteins serve as a secondary force to strengthen cell adhesion. This cell model could be extremely useful for investigating the direct role of cell-surface lectin and its receptor in homologous cell adhesion in a variety of tissues under normal and pathological conditions.


2003 ◽  
Vol 163 (3) ◽  
pp. 547-557 ◽  
Author(s):  
Xinyu Chen ◽  
Shin-ichiro Kojima ◽  
Gary G. Borisy ◽  
Kathleen J. Green

p120 catenin (p120) is a component of adherens junctions and has been implicated in regulating cadherin-based cell adhesion as well as the activity of Rho small GTPases, but its exact roles in cell–cell adhesion are unclear. Using time-lapse imaging, we show that p120-GFP associates with vesicles and exhibits unidirectional movements along microtubules. Furthermore, p120 forms a complex with kinesin heavy chain through the p120 NH2-terminal head domain. Overexpression of p120, but not an NH2-terminal deletion mutant deficient in kinesin binding, recruits endogenous kinesin to N-cadherin. Disruption of the interaction between N-cadherin and p120, or the interaction between p120 and kinesin, leads to a delayed accumulation of N-cadherin at cell–cell contacts during calcium-initiated junction reassembly. Our analyses identify a novel role of p120 in promoting cell surface trafficking of cadherins via association and recruitment of kinesin.


2021 ◽  
Vol 15 (1) ◽  
pp. 1-17
Author(s):  
Sarah Alsharif ◽  
Pooja Sharma ◽  
Karina Bursch ◽  
Rachel Milliken ◽  
Van Lam ◽  
...  

1993 ◽  
Vol 13 (4) ◽  
pp. 2554-2563 ◽  
Author(s):  
D Wojciechowicz ◽  
C F Lu ◽  
J Kurjan ◽  
P N Lipke

alpha-Agglutinin is a cell adhesion glycoprotein expressed on the cell wall of Saccharomyces cerevisiae alpha cells. Binding of alpha-agglutinin to its ligand a-agglutinin, expressed by a cells, mediates cell-cell contact during mating. Analysis of truncations of the 650-amino-acid alpha-agglutinin structural gene AG alpha 1 delineated functional domains of alpha-agglutinin. Removal of the C-terminal hydrophobic sequence allowed efficient secretion of the protein and loss of cell surface attachment. This cell surface anchorage domain was necessary for linkage to a glycosyl phosphatidylinositol anchor. A construct expressing the N-terminal 350 amino acid residues retained full a-agglutinin-binding activity, localizing the binding domain to the N-terminal portion of alpha-agglutinin. A 278-residue N-terminal peptide was inactive; therefore, the binding domain includes residues between 278 and 350. The segment of alpha-agglutinin between amino acid residues 217 and 308 showed significant structural and sequence similarity to a consensus sequence for immunoglobulin superfamily variable-type domains. The similarity of the alpha-agglutinin-binding domain to mammalian cell adhesion proteins suggests that this structure is a highly conserved feature of adhesion proteins in diverse eukaryotes.


1992 ◽  
Vol 116 (4) ◽  
pp. 889-899 ◽  
Author(s):  
D A Wollner ◽  
K A Krzeminski ◽  
W J Nelson

The development of polarized epithelial cells from unpolarized precursor cells follows induction of cell-cell contacts and requires resorting of proteins into different membrane domains. We show that in MDCK cells the distributions of two membrane proteins, Dg-1 and E-cadherin, become restricted to the basal-lateral membrane domain within 8 h of cell-cell contact. During this time, however, 60-80% of newly synthesized Dg-1 and E-cadherin is delivered directly to the forming apical membrane and then rapidly removed, while the remainder is delivered to the basal-lateral membrane and has a longer residence time. Direct delivery of greater than 95% of these proteins from the Golgi complex to the basal-lateral membrane occurs greater than 48 h later. In contrast, we show that two apical proteins are efficiently delivered and restricted to the apical cell surface within 2 h after cell-cell contact. These results provide insight into mechanisms involved in the development of epithelial cell surface polarity, and the establishment of protein sorting pathways in polarized cells.


Sign in / Sign up

Export Citation Format

Share Document