scholarly journals Role of Fat1 in cell-cell contact formation of podocytes in puromycin aminonucleoside nephrosis and neonatal kidney

2005 ◽  
Vol 68 (2) ◽  
pp. 542-551 ◽  
Author(s):  
Eishin Yaoita ◽  
Hidetake Kurihara ◽  
Yutaka Yoshida ◽  
Tsutomu Inoue ◽  
Asako Matsuki ◽  
...  
2010 ◽  
Vol 298 (4) ◽  
pp. F951-F961 ◽  
Author(s):  
Jianxin Zhu ◽  
Ortal Attias ◽  
Lamine Aoudjit ◽  
Ruihua Jiang ◽  
Hiroshi Kawachi ◽  
...  

The tyrosine phosphorylation of nephrin is reported to regulate podocyte morphology via the Nck adaptor proteins. The Pak family of kinases are regulators of the actin cytoskeleton and are recruited to the plasma membrane via Nck. Here, we investigated the role of Pak in podocyte morphology. Pak1/2 were expressed in cultured podocytes. In mouse podocytes, Pak2 was predominantly phosphorylated, concentrated at the tips of the cellular processes, and its expression and/or phosphorylation were further increased when differentiated. Overexpression of rat nephrin in podocytes increased Pak1/2 phosphorylation, which was abolished when the Nck binding sites were mutated. Furthermore, dominant-negative Nck constructs blocked the Pak1 phosphorylation induced by antibody-mediated cross linking of nephrin. Transient transfection of constitutively kinase-active Pak1 into differentiated mouse podocytes decreased stress fibers, increased cortical F-actin, and extended the cellular processes, whereas kinase-dead mutant, kinase inhibitory construct, and Pak2 knockdown by shRNA had the opposite effect. In a rat model of puromycin aminonucleoside nephrosis, Pak1/2 phosphorylation was decreased in glomeruli, concomitantly with a decrease of nephrin tyrosine phosphorylation. These results suggest that Pak contributes to remodeling of the actin cytoskeleton in podocytes. Disturbed nephrin-Nck-Pak interaction may contribute to abnormal morphology of podocytes and proteinuria.


2018 ◽  
Vol 66 (12) ◽  
pp. 863-877 ◽  
Author(s):  
Ayano Kubo ◽  
Isao Shirato ◽  
Teruo Hidaka ◽  
Miyuki Takagi ◽  
Yu Sasaki ◽  
...  

Cathepsin L, a lysosomal cysteine proteinase, may have a key role in various biological and disease processes by intracellular and extracellular degradation of proteins. We examined the levels of cathepsin L and its intrinsic inhibitors in glomeruli of rats with puromycin aminonucleoside (PAN) nephrosis. In contrast to the weak levels of cathepsin L in normal glomeruli, on days 4 and 8, strong immunostaining was detected in almost all podocytes when proteinuria and pathological changes of the podocytes developed. Cathepsin L was reduced after day 28, but remained in a focal and segmental manner. Cystatin β, an intracellular inhibitor, was not detected in podocytes. However, cystatin C, an extracellular inhibitor, was detected in podocytes after day 4, coincident with cathepsin L. Cystatin C levels were gradually reduced but sustained in many podocytes on day 28, while cystatin C was not detected in podocytes sustained cathepsin L. These results demonstrated that cathepsin L levels are not always accompanied by the levels of its inhibitors in podocytes of PAN nephrosis, suggesting a potential role of cathepsin L in podocyte injury, which is a critical process for the development and progression of tuft adhesion and sclerosis.


2004 ◽  
Vol 19 (4) ◽  
pp. 817-822 ◽  
Author(s):  
Y. Watanabe ◽  
T. Kobayashi ◽  
E. Yaoita ◽  
H. Kawachi ◽  
A. Yamauchi ◽  
...  

1995 ◽  
Vol 89 (1) ◽  
pp. 45-52 ◽  
Author(s):  
Tsukasa Nakamura ◽  
Kenjiro Kimura ◽  
Isao Ebihara ◽  
Toshimasa Takahashi ◽  
Yasuhiko Tomino ◽  
...  

1. We investigated the glomerular expression of three types of myosin heavy-chain isoforms, including S-myosin heavy-chain 40 (SM1), S-myosin heavy-chain 29 (SM2) and FS-myosin heavy-chain 34 (SMemb) in puromycin aminonucleoside nephrosis. 2. There was little change in SM1 and SM2 mRNA levels throughout the experiment. In contrast, glomerular SMemb mRNA increased on days 2 and 4 (before and soon after the onset of proteinuria, respectively), but declined on day 8 (the peak of proteinuria). 3. Histological myosin heavy-chain expression was examined using three antibodies against SM1, SM2 and SMemb. Immunohistochemically, SM1 and SM2 were absent in the glomeruli associated with puromycin aminonucleoside nephrosis until day 20. The SMemb isoform was barely detectable in normal glomeruli, but substantial amounts of SMemb were demonstrated in the glomeruli of rats with puromycin aminonucleoside nephrosis. In the puromycin aminonucleoside-treated rats, the number of SMemb-positive glomerular cells increased on days 2 and 4. 4. We examined whether levels of α-smooth-muscle actin or proliferating cell nuclear antigen correlated with myosin heavy-chain levels in the glomeruli of rats with puromycin aminonucleoside nephrosis. None of the cellular components in the glomeruli was positive for either α-smooth-muscle actin or proliferating cell nuclear antigen in puromycin aminonucleoside nephrosis. 5. Administration of methylprednisolone to puromycin aminonucleoside-treated rats resulted in the rapid disappearance of proteinuria. However, methylprednisolone did not affect SMemb mRNA or immunostaining in the glomeruli of rats with puromycin aminonucleoside nephrosis. 6. These data suggest that SMemb may be a molecular marker for phenotypic change in early glomerular injury, and demonstrate that SMemb regulation differs from that of SM1, SM2, α-smooth-muscle actin and proliferating cell nuclear antigen in the glomeruli of rats with puromycin aminonucleoside nephrosis.


2012 ◽  
Vol 23 (11) ◽  
pp. 2076-2091 ◽  
Author(s):  
Qingwen Wan ◽  
Jing Liu ◽  
Zhen Zheng ◽  
Huabin Zhu ◽  
Xiaogang Chu ◽  
...  

Cell–cell contact formation following cadherin engagement requires actomyosin contraction along the periphery of cell–cell contact. The molecular mechanisms that regulate myosin activation during this process are not clear. In this paper, we show that two polarity proteins, partitioning defective 3 homologue (Par3) and mammalian homologues of Drosophila Lethal (2) Giant Larvae (Lgl1/2), antagonize each other in modulating myosin II activation during cell–cell contact formation in Madin-Darby canine kidney cells. While overexpression of Lgl1/2 or depletion of endogenous Par3 leads to enhanced myosin II activation, knockdown of Lgl1/2 does the opposite. Intriguingly, altering the counteraction between Par3 and Lgl1/2 induces cell–cell internalization during early cell–cell contact formation, which involves active invasion of the lateral cell–cell contact underneath the apical-junctional complexes and requires activation of the Rho–Rho-associated, coiled-coil containing protein kinase (ROCK)–myosin pathway. This is followed by predominantly nonapoptotic cell-in-cell death of the internalized cells and frequent aneuploidy of the host cells. Such effects are reminiscent of entosis, a recently described process observed when mammary gland epithelial cells were cultured in suspension. We propose that entosis could occur without matrix detachment and that overactivation of myosin or unbalanced myosin activation between contacting cells may be the driving force for entosis in epithelial cells.


2000 ◽  
Vol 113 (3) ◽  
pp. 391-400 ◽  
Author(s):  
D.A. Bleijs ◽  
M.E. Binnerts ◽  
S.J. van Vliet ◽  
C.G. Figdor ◽  
Y. van Kooyk

Although ICAM-3 is implicated in both adhesion and signal transduction events of leukocytes, its low affinity for LFA-1 compared to other ligands of LFA-1 has puzzled many investigators. Here we investigated the role of ICAM-3 in supporting LFA-1-mediated ICAM-1 binding and subsequently cell signaling. We observed that although ICAM-3 binds poorly to LFA-1 expressed on resting T cells, it specifically facilitates and increases LFA-1-mediated adhesion to the high affinity ligand of LFA-1, ICAM-1. We demonstrate that low-affinity binding of LFA-1 to ICAM-3 together with ICAM-1 alters the cell surface distribution of LFA-1 dramatically, inducing large clusters of LFA-1 that facilitate ICAM-1 binding after LFA-1 activation. We found that LFA-1-mediated ICAM-1 cell-cell interactions such as T cell proliferation greatly depend on low affinity LFA-1/ICAM-3 interactions that enhance stable LFA-1/ICAM-1 cell-cell contact. Taken together, these data demonstrate that low affinity LFA-1 binding to ICAM-3 regulates strong LFA-1/ICAM-1-mediated adhesion by driving LFA-1 into clusters to facilitate cell-cell interactions that take place in the immune system.


2015 ◽  
Vol 95 (9) ◽  
pp. 1019-1028 ◽  
Author(s):  
Izabella Z A Pawluczyk ◽  
Maryam G Najafabadi ◽  
Jeremy R Brown ◽  
Alan Bevington ◽  
Peter S Topham

Sign in / Sign up

Export Citation Format

Share Document