Endogenous testosterone enhances growth hormone (GH)-releasing factor-induced GH secretion in vitro

1987 ◽  
Vol 113 (2) ◽  
pp. 249-253 ◽  
Author(s):  
L. Ohlsson ◽  
O. Isaksson ◽  
J.-O. Jansson

ABSTRACT The influence of endogenous gonadal steroids in male and female rats on basal and growth hormone-releasing factor (GRF)-stimulated GH secretion from perifused anterior pituitaries was studied. After 75 min of perifusion with basal medium, freshly dissected pituitaries were exposed to human GRF(1–44) (10 nmol/l) for 15 min. Neonatal (day 1–2) or prepubertal (day 25) gonadectomy of male rats suppressed baseline GH release (ng/min per mg dry weight) as well as GRF-stimulated GH release by 40–70%. This effect was slightly more pronounced in neonatally gonadectomized animals. In prepubertally gonadectomized male rats, the suppression of GH release was completely reversed by testosterone replacement therapy. In female rats, prepubertal gonadectomy did not affect GH secretion from perifused pituitaries. However, treatment of ovariectomized female rats with oestradiol reduced baseline and GRF-induced GH release to levels lower than those observed in sham-operated or vehicle-treated ovariectomized animals. The data suggest that testicular androgen secretion in adult male rats increases the pituitary GH release in response to GRF in vitro, whereas ovarian oestrogen secretion is of less importance for the GRF responsiveness of female rat pituitaries. J. Endocr. (1987) 113,249–253

1985 ◽  
Vol 106 (3) ◽  
pp. 281-289 ◽  
Author(s):  
R. G. Clark ◽  
I. C. A. F. Robinson

ABSTRACT The GH responses to single i.v. injections of GH-releasing factor (GRF) in conscious male rats are highly variable. Although normal male rats show a pulsatile secretory pattern of GH with pulses occurring at intervals of 3–3·5 h, the peaks occur at different times in individual animals. We have compared the GH responses of young conscious male and female rats to multiple i.v. injections of 1 μg human (h) GRF1-29NH2. The peak GH responses occurred 3–5 min after hGRF1-29NH2 injection and were lower in female than in male rats. Both males and females responded uniformly to hGRF1-29NH2 injections given 180 min apart and the GH responses became entrained with no endogenous GH pulsing. Female rats produced consistent GH peaks in response to hGRF1-29NH2 injections at 90-min intervals, whereas male rats responded only to alternate injections, so that GH peaks occurred only every 180 min despite giving GRF every 90 min. When the frequency of hGRF1-29NH2 administration was increased to once every 40 min female rats again responded consistently to each injection. Male rats responded intermittently, being able to respond to two injections 40 min apart, after which they became refractory to hGRF1-29NH2. This cycle of varying sensitivity to GRF in male rats probably underlies their 3-hourly endogenous GH secretory rhythm. Female rats can respond uniformly to repeated GRF injections, consistent with their more continuous pattern of endogenous GH secretion. Introducing a pulse of 10 μg rat GH into a series of hGRF1-29NH2 injections did not induce refractoriness to hGRF1-29NH2, suggesting that GH does not itself desensitize the pituitary to GRF. Whether the different patterns of GH secretion in males and females result from different patterns of GRF and/or somatostatin secretion remains to be determined. J. Endocr. (1985) 106, 281–289


1990 ◽  
Vol 126 (1) ◽  
pp. 27-35 ◽  
Author(s):  
L. M. S. Carlsson ◽  
R. G. Clark ◽  
I. C. A. F. Robinson

ABSTRACT Growth hormone inhibits its own secretion in animals and man but the mechanism for this inhibition is unclear: both stimulation of somatostatin release and inhibition of GH-releasing factor (GRF) release have been implicated. We have now studied the GRF responsiveness of conscious male and female rats under conditions of GH feedback induced by constant infusion of exogenous human GH (hGH). Intravenous infusions of hGH (60 μg/h) were maintained for 3 to 6 h whilst serial injections of GRF(1–29)NH2 (0·2–1 μg) were given at 45-min intervals. The GH responses were studied by assaying blood samples withdrawn at frequent intervals using an automatic blood sampling system. We have confirmed that male and female rats differ in their ability to respond to a series of GRF injections; female rats produced consistent GH responses for up to 13 consecutive GRF injections, whereas male rats showed a 3-hourly pattern of intermittent responsiveness. In female rats, multiple injections of GRF continued to elicit uniform GH responses during hGH infusions, whereas hGH infusions in male rats disturbed their intermittent pattern of responsiveness to GRF, and their regular 3-hourly cycle of refractoriness was prolonged. We suggest that this sex difference in GH feedback may be due to GH altering the pattern of endogenous somatostatin release differentially in male and female rats. Such a mechanism of GH autofeedback could be involved in the physiological control of the sexually differentiated pattern of GH secretion in the rat. Journal of Endocrinology (1990) 126, 27–35


1990 ◽  
Vol 5 (3) ◽  
pp. 267-274 ◽  
Author(s):  
I. Porsch Hällstöm ◽  
J.-Å. Gustafsson ◽  
A. Blanck

ABSTRACT Expression of the c-myc gene was studied in the livers of male and female Wistar rats. Furthermore, the effects on hepatic c-myc expression of neonatal and adult castration, with or without testosterone supplementation, as well as of continuous administration of GH to intact males, were analysed. Expression of c-myc was low in 6-day-old animals of both sexes, reached a maximum at 35 days of age and declined to the level of adult animals at 70 days. In prepubertal animals, expression was higher in females, but was higher in males after the onset of puberty, the postpubertal female rat liver exhibiting 50–70% of the expression in males. Treatment of adult male rats with bovine GH in osmotic minipumps for 1 week reduced c-myc expression to the level of female rats. Castration, both neonatally and of adults, also feminized hepatic c-myc expression. Testosterone supplementation of the castrated animals increased the expression towards the level in sham-operated controls. These results indicate that the c-myc gene is regulated by the hypothalamo-pituitary-liver axis via the sex-differentiated pattern of GH secretion, in analogy with other sex-differentiated hepatic functions, such as metabolism of steroids and xenobiotics. Neuroendocrine regulation of a gene such as c-myc, which is involved in the control of cell proliferation and differentiation, represents another aspect of the complex influence of GH on various somatic functions.


2012 ◽  
Vol 63 (4) ◽  
pp. 417-427 ◽  
Author(s):  
Mariana Tozlovanu ◽  
Delphine Canadas ◽  
Annie Pfohl-Leszkowicz ◽  
Christine Frenette ◽  
Robert J. Paugh ◽  
...  

AbstractIn the present study the photoreactivity of the fungal carcinogen ochratoxin A (OTA) has been utilised to generate authentic samples of reduced glutathione (GSH) and N-acetylcysteine (NAC) conjugates of the parent toxin. These conjugates, along with the nontoxic OTα, which is generated through hydrolysis of the amide bond of OTA by carboxypeptidase A, were utilised as biomarkers to study the metabolism of OTA in the liver and kidney of male and female Dark Agouti rats. Male rats are more susceptible than female rats to OTA carcinogenesis with the kidney being the target organ. Our studies show that the distribution of OTA in male and female rat kidney is not significantly different. However, the extent of OTA metabolism was greater in male than female rats. Much higher levels of OTα were detected in the liver compared to the kidney, and formation of OTα is a detoxification pathway for OTA. These findings suggest that differences in metabolism between male and female rats could provide an explanation for the higher sensitivity of male rats to OTA toxicity


1996 ◽  
Vol 135 (4) ◽  
pp. 481-488 ◽  
Author(s):  
Antonio Torsello ◽  
Roberta Grilli ◽  
Marina Luoni ◽  
Margherita Guidi ◽  
Maria Cristina Ghigo ◽  
...  

Torsello A, Grilli R, Luoni M, Guidi M, Ghigo MC, Wehrenberg WB, Deghenghi R, Müller EE, Locatelli V. Mechanism of action of Hexarelin. I. Growth hormone-releasing activity in the rat. Eur J Endocrinol 1996;135:481–8. ISSN 0804–4643 We have reported Hexarelin (HEXA), an analog of growth hormone-releasing peptide 6 (GHRP-6), potently stimulates growth hormone (GH) secretion in infant and adult rats. This study was undertaken to further investigate Hexarelin's mechanisms of action. In 10-day-old pups, treatments with HEXA (80 μg/kg, b.i.d.) for 3–10 days significantly enhanced, in a time-related fashion, the GH response to an acute HEXA challenge. Qualitatively similar effects were elicited in pups passively immunized against growth hormone-releasing hormone (GHRH) from birth. In adult male rats, a 5-day pretreatment with HEXA (150 μg/kg, b.i.d.) did not enhance the effect of the acute challenge, and the same pattern was present after a 5-day pretreatment in male rats with surgical ablation of the mediobasal hypothalamus (MBH-ablated rats). In addition, in adult sham-operated rats, Hexarelin (300 μg/kg, iv) induced a GH response greater (p < 0.05) than that induced by GHRH (2 μg/kg, iv). However, in MBH-ablated rats 7 days after surgery, GHRH was significantly (p < 0.05) more effective than HEXA, and 30 days after surgery HEXA and GHRH evoked similar rises of plasma GH. Finally, the in vitro Hexarelin (10−6 mol/l) effect was transient while GHRH (10−8 mol/l) induced a longer lasting and greater GH release. Three different mechanisms, not mutually exclusive, are postulated for Hexarelin stimulation of GH secretion in vivo: a direct action on the pituitary, though of minor relevance; an indirect action that involves release of GHRH, of relevance only in adult rats; and an action through the release of a still unknown hypothalamic "factor", which in infant and adult rats elicits GH release acting sinergistically with GHRH. Antonio Torsello, Department of Pharmacology, via Vanvitelli 32, 20129 Milano, Italy


1978 ◽  
Vol 235 (6) ◽  
pp. E586 ◽  
Author(s):  
Z Naor ◽  
C P Fawcett ◽  
S M McCann

Anterior pituitary content of cyclic AMP (cAMP) and cyclic GMP (cGMP) has been measured during stimulation of gonadotropin release by luteinizing-hormone-releasing hormone (LHRH) in vitro to gain more information concerning the relationship between the mechanism of action of LHRH and cyclic nucleotides. During the increased gonadotropin release obtained by incubation by hemipituitaries with LHRH (0.25--25 X 10(-9) M) for 180 min, the glands taken from both male and female rats exhibited increased cGMP content, whereas cAMP content rose only in those taken from male rats. The increase in cGMP content was observed after only 2 min in the presence of LHRH (5 X 10(-9) M) and prior to augmented gonadotropin release. The increase in cAMP content in the male glands was detectable only after 60 min of incubation. These results suggest that cGMP might be involved in the mechanism of action of LHRH.


2014 ◽  
Vol 307 (4) ◽  
pp. H504-H514 ◽  
Author(s):  
K. Tarhouni ◽  
M. L. Freidja ◽  
A. L. Guihot ◽  
E. Vessieres ◽  
L. Grimaud ◽  
...  

In resistance arteries, a chronic increase in blood flow induces hypertrophic outward remodeling. This flow-mediated remodeling (FMR) is absent in male rats aged 10 mo and more. As FMR depends on estrogens in 3-mo-old female rats, we hypothesized that it might be preserved in 12-mo-old female rats. Blood flow was increased in vivo in mesenteric resistance arteries after ligation of the side arteries in 3- and 12-mo-old male and female rats. After 2 wk, high-flow (HF) and normal-flow (NF) arteries were isolated for in vitro analysis. Arterial diameter and cross-sectional area increased in HF arteries compared with NF arteries in 3-mo-old male and female rats. In 12-mo-old rats, diameter increased only in female rats. Endothelial nitric oxide synthase expression and endothelium-mediated relaxation were higher in HF arteries than in NF arteries in all groups. ERK1/2 phosphorylation, NADPH oxidase subunit expression levels, and arterial contractility to KCl and to phenylephrine were greater in HF vessels than in NF vessels in 12-mo-old male rats only. Ovariectomy in 12-mo-old female rats induced a similar pattern with an increased contractility without diameter increase in HF arteries. Treatment of 12-mo-old male rats and ovariectomized female rats with hydralazine, the antioxidant tempol, or the angiotensin II type 1 receptor blocker candesartan restored HF remodeling and normalized arterial contractility in HF vessels. Thus, we found that FMR of resistance arteries remains efficient in 12-mo-old female rats compared with age-matched male rats. A balance between estrogens and vascular contractility might preserve FMR in mature female rats.


1993 ◽  
Vol 294 (1) ◽  
pp. 159-165 ◽  
Author(s):  
P K Srivastava ◽  
D J Waxman

The sex-dependent expression and growth hormone (GH) regulation of rat liver glutathione S-transferase (GST) was examined using oligonucleotide probes that distinguish between closely related class Alpha (Ya1, Ya2, Yc) and class Mu (Yb1, Yb2, Yb3) GST mRNAs [Waxman, Sundseth, Srivastava and Lapenson (1992) Cancer Res. 52, 5797-5802]. Northern-blot analysis revealed that the steady-state levels of GST Ya1, Yb1 and Yb2 mRNAs are 2.5-3-fold higher in male as compared with female rat liver. In contrast, GST Yc and Ya2 mRNAs were expressed at a 2-3-fold higher level in female rat liver. Microsomal GST mRNA did not exhibit significant sex-dependent differences in rat liver. Treatment of male rats with GH by continuous infusion suppressed expression of the male-dominant GST Ya1, Yb1 and Yb2 mRNAs to levels at or below those found in female rat liver. This suppressive effect of GH was liver-specific, insofar as GH treatment did not alter kidney GST Ya1 mRNA levels. Hypophysectomy increased expression of the male-dominant GSTs, particularly in female rats (e.g. 8-fold elevation of GST Ya1 mRNA). GST Yc mRNA was increased approx. 2-fold in hypophysectomized males, indicating that this mRNA is subject to negative regulation by one or more pituitary-dependent factors. Continuous GH treatment of the hypophysectomized rats suppressed the expression of mRNA of GSTs Ya1, Yb1 and Yb2 when given as a continuous infusion, but not when given by an intermittent (twice daily) GH-injection schedule. Combination of continuous exposure to GH with thyroxine treatment resulted in a more complete suppression of GSTs Ya1, Yb1 and Yb2. In contrast, thyroxine increased the expression of GST Yc in hypophysectomized rats. These studies establish that several Alpha and Mu class GSTs are expressed in a sex-dependent fashion in adult rat liver, where they are regulated by multiple pituitary-dependent hormones through pretranslational mechanisms.


1997 ◽  
Vol 273 (1) ◽  
pp. R153-R160
Author(s):  
M. Moriyama ◽  
Y. Nakanishi ◽  
S. Tsuyama ◽  
Y. Kannan ◽  
M. Ohta ◽  
...  

The conversion of beta- to alpha-adrenergic glycogenolysis by corticosteroids was studied in perfused livers of mature female rats. Isoproterenol stimulated glucose production more effectively in female rats than in male rats, but the difference in its stimulatory effect disappeared in adrenalectomized (ADX) rats, whereas it remained in adrenodemedulated rats. When ADX female rats were treated with dexamethasone sulfate, alpha-responses increased and beta-responses decreased, depending on the concentration of dexamethasone sulfate. The treatment of female rats with 1.5 mg/kg dexamethasone sulfate changed the levels of the alpha- and beta-responses to those observed in male rats, and the changes were associated with changes in the number of receptors. Although periodicity of changes in plasma corticosterone levels was observed in both male and female rats, the extent of circadian variations was significantly lower in female rats during the estrous cycle than in male rats. The variations in plasma corticosterone levels and in both alpha- and beta-responses after ovariectomy approached those in male rats. The results suggest that the level of plasma corticosterone might play an important role in the regulation of the relative levels of alpha- and beta-adrenergic responses in female rats.


1999 ◽  
Vol 18 (2) ◽  
pp. 106-110
Author(s):  
Livia Secondin ◽  
Stefano Maso ◽  
Andrea Trevisan

1 Nephrotoxic effects of 1,3-dichloropropene (cis and trans isomers mixture) was investigated in vitro by means of renal cortical slice model in male and female rats, including treatment with metabolism modifiers as an inducer of cytochrome P-450 1A class (β-naphtho-flavone), a reduced glutathione depleting (DL-buthio-nine-[S, R]-sulfoximine), an inhibitor of g-glutamyltransferase (AT-125) and inhibitor of cysteine conjugate β-lyase (aminooxiacetic acid).2 Dose-dependent decrease of p-aminohippurate uptake was observed in male renal cortical slices. Only the high doses (3.0 and 4.0×10-4M) caused a significant loss of organic anion uptake in females.3 β-Naphthoflavone and α-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (AT-125) partially, but significantly, reduced organic anion loss in males. In females, DL-buthionine-[S, R]-sulfoximine significantly increased in females but in males loss of organic anion accumulation caused by 1,3-dichloropropene. Aminooxyacetic acid did not ameliorate 1,3 D effects in vivo and in vitro in male rats. It appeared very toxic for female rats (all rats died) after in vivo injection.4 Sensitivity to nephrotoxicity induced by 1,3-dichlor-opropene in vitro was about double in male than female rats. Reduced glutathione conjugation appeared involved in nephrotoxicity induced in males but in females, probably by means of a chloropropylcysteinylglycine-conjugate formation; slight toxicity in females is likely related to oxidative metabolism.


Sign in / Sign up

Export Citation Format

Share Document