Effect of thyroid hormones on angiotensinogen production in the rat in vivo and in vitro

1987 ◽  
Vol 115 (2) ◽  
pp. 311-315 ◽  
Author(s):  
M. Ruiz ◽  
M. Montiel ◽  
E. Jimenez ◽  
M. Morell

ABSTRACT The influence of thyroid hormones on angiotensinogen production was studied in vitro and in vivo. In the in-vitro system, angiotensinogen production rate (APR) of monolayer cultures of rat hepatocytes in response to tri-iodothyronine (T3) and thyroxine (T4) was assayed. In the in-vivo system, plasma angiotensinogen concentration (PAC) and liver angiotensinogen content (LAC) were measured in hyper- and hypothyroid rats. In both thyroid dysfunctions, a significant decrease of PAC was found compared with that in control animals; however, LAC showed a significant increase in hyperthyroidism and a marked decrease in hypothyroidism. As PAC is dependent upon both angiotensinogen production by the liver and angiotensinogen degradation by renin, the decrease in PAC observed in hyperthyroidism could be due to an increase in plasma renin concentration, which would overcome the increased synthesis of liver angiotensinogen observed in these animals. In fact, addition of various concentrations of T4 or T3 to monolayer cultures of adult rat hepatocytes significantly enhanced APR. This increase was greater and started earlier with T3 (1196·1 ± 143·7 (s.d.) pg/mg protein per 6-h incubation; significant differences at the third hour of incubation) than with T4 (858·3 ± 88·2 pg/mg protein per 6-h incubation; significant differences at the sixth hour of incubation). In addition, a close dose–response relationship was found in the cultures supplemented with T3. The different time-course in the response elicited by T3 and T4 on APR could be a consequence of the necessary transformation of T4 into T3 to acquire biological activity. J. Endocr. (1987) 115, 311–315

1989 ◽  
Vol 121 (1) ◽  
pp. 31-36 ◽  
Author(s):  
C. A. Edwards ◽  
C. Dieguez ◽  
M. F. Scanlon

ABSTRACT The aim of this study was to investigate the role of thyroid hormones and glucocorticoids on GH secretion. Secretion of GH in response to GH-releasing hormone (GHRH) (5 μg/kg) was markedly (P < 0·001) decreased in hypothyroid rats in vivo (peak GH responses to GHRH, 635 ± 88 μg/l in euthyroid rats vs 46 ±15 μg/l in hypothyroid rats). Following treatment with tri-iodothyronine (T3; 20 μg/day s.c. daily for 2 weeks) or cortisol (100 pg/day s.c. for 2 weeks) or T3 plus cortisol, a marked (P <0·01) increase in GH responses to GHRH was observed in hypothyroid rats (peak GH responses, 326 ±29 μg/l after T3 vs 133+19 μg/l after cortisol vs 283 ± 35 μg/l after cortisol plus T3). In contrast, none of these treatments modified GH responses to GHRH in euthyroid animals. Hypothyroidism was also associated with impaired GH responses to the GH secretagogue, Hisd-Trp-Ala-Trp-d-Phe-Lys-NH2 (GHRP-6). Secretion of GH in response to GHRP-6 in vivo was reduced (P <0·01) in hypothyroid rats (peak GH responses, 508 ± 177 μg/l in euthyroid rats vs 203 ± 15 μg/l in hypothyroid rats). In-vitro studies carried out using monolayer cultures of rat anterior pituitary cells derived from euthyroid and hypothyroid rats showed a marked impairment of somatotroph responsiveness to both GHRP-6 and somatostatin in cultures derived from hypothyroid rats. In summary, our data suggest that thyroid hormones and glucocorticoids influence GH secretion by modulating somatotroph responsiveness to different GH secretagogues. Journal of Endocrinology (1989) 121, 31–36


2005 ◽  
Vol 24 (9) ◽  
pp. 475-480 ◽  
Author(s):  
Lourdes García-Rubio ◽  
Pura Matas ◽  
María-Prado Míguez

Paraquat (PQ) is a known herbicide that causes acute cell injury by undergoing redox cycling. In previous reports, it has been reported that melatonin reduces PQ-induced hepatic toxicity in vivo, but, at the moment, there is no evidence that this effect occurs in this organ in vitro. In the present study we examined the effect of melatonin on PQ-induced oxidative damage in the liver using a hepatocyte suspension as a biological model. Preincubation of hepatocytes with melatonin (0.5, 1 or 2 mM), 30 min prior to PQ (10 mM) addition, prevented in a dose-and time-dependent manner the loss of viability, the leakage of lactate dehydrogenase, depletion of intra-cellular glutathione and malondialdehyde accumulation induced by the herbicide. Melatonin at the highest dose assayed (2 mM) completely prevented cell damage caused by PQ. These effects of melatonin are similar to those described in studies carried out in vivo. These results confirm that melatonin confers protection against PQ-induced hepatic oxidative stress and show that freshly isolated hepatocyte suspension is an adequate in vitro system for evaluating the cytoprotective effects of melatonin on oxidative injury caused by xenobiotics.


1983 ◽  
Vol 104 (4) ◽  
pp. 479-484 ◽  
Author(s):  
Sylvi Aanderud ◽  
Jarle Aarbakke ◽  
Johan Sundsfjord

Abstract. The in vitro handling of thyroid hormones was studied in isolated rat hepatocytes by measuring 1) the cellular uptake of T4, 2) the conversion of T4 to T3 and 3) the degradation of T4 and T3. The in vitro conversion of T4 to T3 increased significantly by adding ethanol 2% or carbamazepine (CBZ) 400 μm in ethanol 2% to the incubation medium. As there was no difference between ethanol and CBZ/ethanol on the T3 formation, this effect was probably caused by ethanol. The T3 formation was unaffected by phenytoin (PHT) in conc. up to 400 μm, while propylthiouracil (PTU) 100 and 400 μm inhibited the conversion completely. The T4 to T3 conversion in hepatocytes from rats pretreated with CBZ or PHT for 2 weeks was not significantly different from untreated controls. The cellular uptake of T4 was reduced by about 30% in the presence of PHT and unaltered by CBZ and ethanol. The degradation of T4 and T3 was not influenced by the in vitro addition of CBZ or PHT, nor was the degradation of T4 and T3 significantly different from untreated controls in hepatocyte suspensions from CBZ or PHT pretreated rats. Our findings suggest that the handling of thyroid hormones in isolated rat hepatocytes is not influenced by the in vitro or in vivo exposure to CBZ or PHT.


Author(s):  
M. Kraemer ◽  
J. Foucrier ◽  
J. Vassy ◽  
M.T. Chalumeau

Some authors using immunofluorescent techniques had already suggested that some hepatocytes are able to synthetize several plasma proteins. In vitro studies on normal cells or on cells issued of murine hepatomas raise the same conclusion. These works could be indications of an hepatocyte functionnal non-specialization, meanwhile the authors never give direct topographic proofs suitable with this hypothesis.The use of immunoenzymatic techniques after obtention of monospecific antisera had seemed to us useful to bring forward a better knowledge of this problem. We have studied three carrier proteins (transferrin = Tf, hemopexin = Hx, albumin = Alb) operating at different levels in iron metabolism by demonstrating and localizing the adult rat hepatocytes involved in their synthesis.Immunological, histological and ultrastructural methods have been described in a previous work.


1991 ◽  
Vol 66 (05) ◽  
pp. 609-613 ◽  
Author(s):  
I R MacGregor ◽  
J M Ferguson ◽  
L F McLaughlin ◽  
T Burnouf ◽  
C V Prowse

SummaryA non-stasis canine model of thrombogenicity has been used to evaluate batches of high purity factor IX concentrates from 4 manufacturers and a conventional prothrombin complex concentrate (PCC). Platelets, activated partial thromboplastin time (APTT), fibrinogen, fibrin(ogen) degradation products and fibrinopeptide A (FPA) were monitored before and after infusion of concentrate. Changes in FPA were found to be the most sensitive and reproducible indicator of thrombogenicity after infusion of batches of the PCC at doses of between 60 and 180 IU/kg, with a dose related delayed increase in FPA occurring. Total FPA generated after 100-120 IU/kg of 3 batches of PCC over the 3 h time course was 9-12 times that generated after albumin infusion. In contrast the amounts of FPA generated after 200 IU/kg of the 4 high purity factor IX products were in all cases similar to albumin infusion. It was noted that some batches of high purity concentrates had short NAPTTs indicating that current in vitro tests for potential thrombogenicity may be misleading in predicting the effects of these concentrates in vivo.


1985 ◽  
Vol 108 (4) ◽  
pp. 511-517 ◽  
Author(s):  
Nandalal Bagchi ◽  
Birdie Shivers ◽  
Thomas R. Brown

Abstract. Iodine in excess is known to acutely inhibit thyroidal secretion. In the present study we have characterized the time course of the iodine effect in vitro and investigated the underlying mechanisms. Labelled thyroid glands were cultured in vitro in medium containing mononitrotyrosine, an inhibitor of iodotyrosine deiodinase. The rate of hydrolysis of labelled thyroglobulin was measured as the proportion of labelled iodotyrosines and iodothyronines recovered at the end of culture and was used as an index of thyroidal secretion. Thyrotrophin (TSH) administered in vivo acutely stimulated the rate of thyroglobulin hydrolysis. Addition of Nal to the culture medium acutely inhibited both basal and TSH-stimulated thyroglobulin hydrolysis. The effect of iodide was demonstrable after 2 h, maximal after 6 h and was not reversible upon removal of iodide. Iodide abolished the dibutyryl cAMP induced stimulation of thyroglobulin hydrolysis. Iodide required organic binding of iodine for its effect but new protein or RNA synthesis was not necessary. The inhibitory effects of iodide and lysosomotrophic agents such as NH4C1 and chloroquin on thyroglobulin hydrolysis were additive suggesting different sites of action. Iodide added in vitro altered the distribution of label in prelabelled thyroglobulin in a way that suggested increased coupling in the thyroglobulin molecule. These data indicate that 1) the iodide effect occurs progressively over a 6 h period, 2) continued presence of iodide is not necessary once the inhibition is established, 3) iodide exerts its action primarily at a post cAMP, prelysosomal site and 4) the effect requires organic binding of iodine, but not new RNA or protein synthesis. Our data are consistent with the hypothesis that excess iodide acutely inhibits thyroglobulin hydrolysis by increasing the resistance of thyroglobulin to proteolytic degradation through increased iodination and coupling.


Sign in / Sign up

Export Citation Format

Share Document