Inhibitory effect of the uterus on plasma and pituitary FSH in rats

1990 ◽  
Vol 124 (2) ◽  
pp. 183-189 ◽  
Author(s):  
J. C. Biro ◽  
P. Eneroth

ABSTRACT Plasma concentrations of FSH and LH were measured in ovariectomized, ovohysterectomized, hysterectomized and sham-operated adult, non-pregnant rats at 3, 14, 21 and 28 days after operation. From day 21 after the operation onwards, there were higher concentrations of FSH in plasma in ovohysterectomized than in ovariectomized animals. The concentration of LH was not influenced by hysterectomy. The inhibitory response of FSH and LH to a single dose of oestradiol was not altered by any of the operations. By 2 weeks after surgery, pituitary FSH content had increased in ovohysterectomized animals compared with ovariectomized ones, but this difference was eliminated when ovohysterectomized animals were treated with crude uterine extract. Pituitary contents of LH and prolactin were not influenced by hysterectomy or by treatment with uterine extract, thus indicating the specificity of an inhibitory effect of the uterus on FSH levels. Treatment of hysterectomized and intact animals with uterine extract resulted in a reduction in the weight of the ovaries of 23–38% (P<0·05), indirectly showing the presence of an FSH-inhibiting substance in the extract. Fractionated uterine extract inhibited FSH synthesis by rat pituitary cells in vitro, but had no effect on LH synthesis. Chromatographic analysis indicated that the FSH-inhibiting substance in the uterus has a molecular weight of 10 000–20 000. Journal of Endocrinology (1990) 124, 183–189

1996 ◽  
Vol 8 (8) ◽  
pp. 1137 ◽  
Author(s):  
Y Nambo ◽  
S Nagata ◽  
M Oikawa ◽  
T Yoshihara ◽  
N Tsunoda ◽  
...  

Plasma concentrations of immunoreactive (ir)-inhibin were measured in seven pregnant mares from around Day 140 of gestation to Day 2 after parturition using a heterologous bovine-based radioimmunoassay (RIA). Concentrations of luteinizing hormone (LH), follicle-stimulating hormone (FSH), oestradiol-17 beta, progesterone and relaxin were also measured in the same samples. A marked increase in plasma concentrations of ir-inhibin, FSH and LH occurred between Day 220 and Day 300 of gestation but the concentrations of all three hormones returned to baseline by about Day 320 (three weeks before parturition). In contrast, circulating concentrations of the three placental hormones, oestradiol-17 beta, progesterone and relaxin, increased during the final weeks of pregnancy and then decreased markedly to basal values within two days of parturition. There was a positive correlation between circulating concentrations of ir-inhibin and FSH (r = 0.75, P < 0.01) rather than the expected negative correlation. ir-inhibin was not detected in homogenates obtained at Day 190 of pregnancy and form term placenta, but high concentrations of ir-inhibin were present in homogenates of fetal and newborn gonads. Despite the high concentrations of ir-inhibin in these homogenates, they failed to exert any suppressive bioactivity on FSH secretion by rat pituitary cells cultured in vitro. Furthermore, immunohistochemical staining revealed the presence of inhibin in the interstitial cells of equine fetal gonads at Day 190 of gestation. These findings demonstrate for the first time that high concentrations of ir-inhibin, LH and FSH are secreted into the peripheral circulation of the mare during the second half of pregnancy. However, ir-inhibin present in the plasma of pregnant mares appears to be biologically inactive. This hormone is not presumed to be of placental origin but it is proposed that either the enlarged fetal gonads or the maternal ovaries, or both of these organs, may be a source of inhibin in response to the coincident increase in circulating concentrations of LH and FSH.


1988 ◽  
Vol 117 (4_Suppl) ◽  
pp. S188-S189
Author(s):  
L. KIESEL ◽  
T. RABE ◽  
D. SCHOLZ ◽  
V. KIRSCHNER ◽  
B. RUNNEBAUM

Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 558
Author(s):  
ZeWen Yu ◽  
WenZhi Ren ◽  
Tian Wang ◽  
WeiDi Zhang ◽  
ChangJiang Wang ◽  
...  

CircRNAs have been identified to be expressed differently and stably in numerous species and tissues, but their functions in growth hormone (GH) secretion are still largely unknown. In summary, we have revealed a circRNA-miRNA-mRNA network that may play a biological role in the rat pituitary gland. First, we verified the chromosome location information of circAgtpbp1 according to sequencing analysis. The circAgtpbp1 characteristics were authenticated through PCR, qRT–PCR, treating with RNase and fluorescent in situ hybridization (FISH). Second, we detected the expression pattern of circAgtpbp1 in the rat anterior pituitary by qRT–PCR. We also designed circAgtpbp1 siRNA and constructed overexpression plasmid to evaluate the effect of circAgtpbp1 function on GH secretion by qRT–PCR, ELISA and Western blot. CircAgtpbp1 is a stable, truly circular molecule. We found that circAgtpbp1 interacted with miR-543-5p and can regulate GH secretion in pituitary cells through a circAgtpbp1-miR-543-5p-GH axis. Overall, the evidence generated by our study suggests that circAgtpbp1 can act as a sponge of miR-543-5p to reduce the inhibitory effect of miR-543-5p on Gh1 and further promote GH secretion. These findings expand our existing knowledge on the mechanisms of hormone regulation in the pituitary gland.


1980 ◽  
Vol 87 (1) ◽  
pp. 95-103 ◽  
Author(s):  
G. DELITALA ◽  
T. YEO ◽  
ASHLEY GROSSMAN ◽  
N. R. HATHWAY ◽  
G. M. BESSER

The inhibitory effects of dopamine and various ergot alkaloids on prolactin secretion were studied using continuously perfused columns of dispersed rat anterior pituitary cells. Bromocriptine (5 nmol/l) and lisuride hydrogen maleate (5 nmol/l) both inhibited prolactin secretion, the effects persisting for more than 3 h after the end of the administration of the drugs. A similar although less long-lasting effect was observed with lergotrile (50 nmol/l) and the new ergoline derivative, pergolide (5 nmol/l). These effects contrasted with the rapid disappearance of the action of dopamine. The potency estimates of the ergots relative to that of dopamine were: lergotrile, 2·3; bromocriptine, 13; lisuride, 15; pergolide, 23. The dopamine-receptor blocking drugs, metoclopramide and haloperidol, antagonized the prolactin release-inhibiting activity of the compounds; bromocriptine and lisuride showed the highest resistance to this dopaminergic blockade. The results suggested that the direct effect of the ergot derivatives on dispersed pituitary cells was mediated through dopamine receptors and emphasized the long-lasting action of bromocriptine and lisuride in vitro.


1984 ◽  
Vol 246 (3) ◽  
pp. E243-E248
Author(s):  
A. L. Goodman

To examine a regulatory role for inhibin in female rabbits, an in vitro bioassay for inhibin activity was modified to use cultured rabbit pituitary cells and charcoal-extracted porcine follicular fluid (pFFx) as a reference preparation. pFFx inhibited follicle-stimulating hormone (FSH) release in a dose-dependent manner in cultures from both intact (I) and castrate (C) does at doses that also inhibited FSH release by cultured rat pituitary cells. Basal FSH release by I cells was inhibited greater than 10% by 0.02% (vol/vol) and greater than 90% by greater than or equal to 0.2% pFFx, whereas in C cells maximal inhibition of FSH release plateaued at only approximately 75%. FSH secretion was restored after removal of pFFx in day 2 media. Luteinizing hormone (LH) release by C cells was not inhibited at any dose of pFFx, but in I cells LH was progressively inhibited to approximately 60% of control levels during day 2 (but not day 1). Charcoal-extracted media (0.25-1%) in which 5 X 10(5) rabbit granulosa cells had been earlier cultured for 72 h produced a parallel inhibition of FSH release. The present findings demonstrate that 1) rabbit pituitary cells are responsive to inhibin, i.e., pFFx preferentially inhibited FSH secretion in a direct, graded, and reversible manner and 2) rabbit follicular granulosa cells secrete an inhibin-like substance.


1990 ◽  
Vol 52 (5) ◽  
pp. 468-472 ◽  
Author(s):  
Masaaki Yamaguchi ◽  
Masahiro Sakata ◽  
Noboru Matsuzaki ◽  
Koji Koike ◽  
Akira Miyake ◽  
...  

1996 ◽  
Vol 134 (2) ◽  
pp. 236-242 ◽  
Author(s):  
Deokbae Park ◽  
Minseok cheon ◽  
Changmee Kim ◽  
Kyungjin Kim ◽  
Kyungza Ryu

Park D, Cheon M, Kim C, Kim K, Ryu K. Progesterone together with estradiol promotes luteinizing hormoneβ-subunit mRNA stability in rat pituitary cells in vitro. Eur J Endocrinol 1996;134:236–42. ISSN 0804–4643 The present study examined the role of ovarian steroids, estradiol and/or progesterone in the regulation of luteinizing hormone β-subunit (LH-β) mRNA levels and LH release in the rat anterior pituitary cells cultured in vitro. When estradiol (10 nmol/l and/or progesterone (100 nmol/l) were added to the cultures, neither estradiol or progesterone nor both together altered the basal LH-β mRNA levels or LH release. Continuous exposure to gonadotropin-releasing hormone (GnRH, 0.2 nmol/l) for 24 h markedly induced LH-β mRNA accumulation, and in this experimental condition, progesterone alone and progesterone + estradiol further augmented GnRH-induced LH-β mRNA levels and LH release. Then we explored further the possibility that ovarian steroids are involved in modulating LH-β mRNA stability in cultured rat pituitary cells where transcription was inhibited by actinomycin D. Anterior pituitary cells were preincubated with GnRH (0.2 nmol/l) for 16 h and, after removing GnRH from culture medium, the cells were incubated further in the presence of actinomycin D (5 μmol/l) for 24 h. The LH-β mRNA levels gradually declined to about 30% of the control values (zero time point after GnRH removal) in a time-dependent manner. During this period, either progesterone alone or progesterone + estradiol clearly blocked the degradation of LH-β mRNA species. These results indicate that ovarian steroids promote LH-β mRNA stability, thereby contributing to the maintenance of GnRH-stimulated LH-β mRNA levels. Kyungza Ryu, Department of Pharmacology, College of Medicine, Yonsei University, 120-749, Seoul, Korea


1989 ◽  
Vol 50 (1) ◽  
pp. 44-50 ◽  
Author(s):  
Steven W. Lamberts ◽  
Joke Zuyderwijk ◽  
Fred den Holder ◽  
Peter van Koetsveld ◽  
Leo Hofland

1987 ◽  
Vol 116 (2) ◽  
pp. 165-171 ◽  
Author(s):  
Koji Nakagawa ◽  
Tatsuya Ishizuka ◽  
Takao Obara ◽  
Miyao Matsubara ◽  
Kazumasa Akikawa

Abstract. The mechanism of apparently discrepant actions of glucocorticoids (GC) on GH secretion, in vivo suppression and in vitro potentiation, was studied in rats. Dexamethasone (Dex), at the concentration of 50 nmol/l, Potentiated basal and GHRH-stimulated GH release from monolayer culture of normal rat pituitary cells in 48 h. On the other hand, in vivo administration of Dex, 165 μg daily for 3 days, consistently suppressed serum GH levels in female rats. In these rats, the hypothalamic content of immunoreactive (IR) SRIH was significantly increased, whereas that of IR-GHRH was significantly decreased in comparison with the untreated rats. Bioassayable GH-releasing activity was also lower in Dex-treated rats. These findings indicate that the suppressing effect of GC on GH release in vivo is, at least partially, due to the increase in hypothalamic SRIH release and probably also to the decrease in GHRH release, and these effects surpass the potentiating effect of GC on GH release at the pituitary level, resulting in a net inhibitory effect in vivo.


Sign in / Sign up

Export Citation Format

Share Document