Changes in the hypothalamic contents of LHRH-I and -II and in pituitary responsiveness to synthetic chicken LHRH-I and -II during the progesterone-induced surge of LH in the laying hen

1990 ◽  
Vol 127 (3) ◽  
pp. 487-496 ◽  
Author(s):  
S. C. Wilson ◽  
R. A. Chairil ◽  
F. J. Cunningham ◽  
R. T. Gladwell

ABSTRACT The contents of LHRH-I and -II in the anterior hypothalamus and posterior hypothalamus (including the mediobasal hypothalamus and median eminence) were measured at 90, 180 and 360 min after the i.m. injection of laying hens with progesterone. Whilst no changes were observed in the content of LHRH-I in the anterior hypothalamus, LHRH-I in the posterior hypothalamus tended to fall at 90 and 180 min after injection of progesterone in hens maintained on 16 h light:8 h darkness (16L:8D) and 8L:16D respectively. Pretreatment of laying hens with tamoxifen significantly increased the hypothalamic contents of LHRH-I and -II, raised the basal plasma concentration of LH and modified the LH response to progesterone injection. In hens in which tamoxifen prevented an increase in the plasma concentration of LH after progesterone injection, the content of LHRH-I in the posterior hypothalamus remained unchanged. In contrast, in hens in which progesterone stimulated a steep increase in LH within 90 min, there was a pronounced and significant fall in LHRH-I content of the posterior hypothalamus. No change in the hypothalamic content of LHRH-II was observed during the progesterone-induced surge of LH until plasma concentrations had attained maximal values or started to decline. Then, in hens maintained on 16L:8D, a significant fall in the content of LHRH-II in the anterior hypothalamus was found at both 180 and 360 min after injection with progesterone. Tests in vitro and in vivo of the responsiveness of the pituitary gland to synthetic LHRH-I and -II revealed no change at 90 min after injection of laying hens with progesterone, when plasma concentrations of LH were increasing, but a pronounced reduction when plasma LH concentrations were maximal or falling. These results suggest that LHRH-I mediates in the progesterone-induced increase in the plasma concentration of LH. Although the subsequent decline in plasma LH was associated with a reduced responsiveness of the pituitary gland to LHRH, a significant correlation between the contents of LHRH-I and -II in the anterior hypothalamus and a fall in the hypothalamic content of LHRH-II when plasma LH was maximal or declining allows the possibility of an involvement of this peptide in the neuroendocrine events preceding ovulation. Journal of Endocrinology (1990) 127, 487–496

1991 ◽  
Vol 130 (3) ◽  
pp. 457-462 ◽  
Author(s):  
S. C. Wilson ◽  
R. T. Gladwell ◽  
F. J. Cunningham

ABSTRACT Diurnal changes of LH secretion in sexually immature hens of 9, 11, 13 and 15 weeks of age consisted of 25–40% increases in the mean concentrations of LH in plasma between 15.00 and 18.00 h, i.e. between 2 h before and 1 h after the onset of darkness. During this time there was a tendency for the mean contents of LHRH-I in the anterior hypothalamus and posterior hypothalamus to increase by 21–74% and 20–56% respectively. In hens of 9 and 15 weeks, diurnal changes in the plasma concentration of LH closely paralleled those of LHRH-I content in the posterior hypothalamus. In contrast, the diurnal rhythm of LH secretion in hens of 11 and 13 weeks was more marked and plasma concentrations of LH continued to rise steeply between 18.00 and 21.00 h, i.e. between 1 and 4 h after the onset of darkness. At 11 weeks, this was associated with a reduction (P<0·01) in the contents of LHRH-I and LHRH-II, particularly in the anterior hypothalamus. In laying hens, a diurnal decline (P<0·01) in the plasma concentration of LH between 1 and 4 h after the onset of darkness was preceded by a fall (P<0·05) in the content of LHRH-I in the posterior hypothalamus and in the total hypothalamic content of LHRH-II (P<0·01). In all groups of hens, irrespective of the times of day at which tissue was taken, significant (P<0·05–<0·001) correlations between the contents of LHRH-I and LHRH-II in the anterior hypothalamus were observed. It is concluded that a diurnal rhythm of release of LHRH-I may drive the diurnal rhythm of LH secretion. Thus, in sexually immature hens of 9 and 15 weeks and laying hens in which diurnal changes in plasma LH were small there were parallel changes in the content of LHRH-I in the posterior hypothalamus. However, where the plasma concentration of LH was increased substantially, as at 11 weeks, there was a decline in the hypothalamic contents of LHRH-I. A simultaneous fall in the hypothalamic content of LHRH-II raises the possibility of a causal relationship between the activities of LHRH-II, LHRH-I and the release of LH. Journal of Endocrinology (1991) 130, 457–462


1970 ◽  
Vol 64 (4) ◽  
pp. 687-695 ◽  
Author(s):  
Junzo Kato

ABSTRACT The anterior, middle, and posterior hypothalamus, the cortex cerebri, the anterior hypophysis as well as the diaphragm of adult ovariectomized rats were incubated in vitro with tritiated 17β-oestradiol. The uptake of tritiated oestradiol was differentially distributed intracerebrally with higher accumulation in the anterior hypothalamus and the hypophysis. Lowering the temperature of the incubation medium caused a reduction in the uptake of radioactivity by the anterior hypothalamus as compared to that found in other brain tissues. Tritiated oestradiol taken up in vitro by the anterior hypothalamus and the hypophysis tended to be retained after further incubation in a steroid-free medium. The addition of non-radioactive 17β-oestradiol to the medium inhibited the uptake of tritiated oestradiol by these tissues. Moreover, pretreatment with non-radioactive 17β-oestradiol in vivo prevented the preferential accumulation of tritiated oestradiol in vitro in the anterior hypothalamus and the hypophysis. These results indicate that oestradiol is preferentially taken up in vitro by the anterior hypothalamus and the hypophysis of the rat.


2020 ◽  
Vol 16 ◽  
Author(s):  
Xi He ◽  
Wenjun Hu ◽  
Fanhua Meng ◽  
Xingzhou Li

Background: The broad-spectrum antiparasitic drug nitazoxanide (N) has been repositioned as a broad-spectrum antiviral drug. Nitazoxanide’s in vivo antiviral activities are mainly attributed to its metabolitetizoxanide, the deacetylation product of nitazoxanide. In reference to the pharmacokinetic profile of nitazoxanide, we proposed the hypotheses that the low plasma concentrations and the low system exposure of tizoxanide after dosing with nitazoxanide result from significant first pass effects in the liver. It was thought that this may be due to the unstable acyloxy bond of nitazoxanide. Objective: Tizoxanide prodrugs, with the more stable formamyl substituent attached to the hydroxyl group rather than the acetyl group of nitazoxanide, were designed with the thought that they might be more stable in plasma. It was anticipated that these prodrugs might be less affected by the first pass effect, which would improve plasma concentrations and system exposure of tizoxanide. Method: These O-carbamoyl tizoxanide prodrugs were synthesized and evaluated in a mouse model for pharmacokinetic (PK) properties and in an in vitro model for plasma stabilities. Results: The results indicated that the plasma concentration and the systemic exposure of tizoxanide (T) after oral administration of O-carbamoyl tizoxanide prodrugs were much greater than that produced by equimolar dosage of nitazoxanide. It was also found that the plasma concentration and the systemic exposure of tizoxanide glucuronide (TG) were much lower than that produced by nitazoxanide. Conclusion: Further analysis showed that the suitable plasma stability of O-carbamoyl tizoxanide prodrugs is the key factor in maximizing the plasma concentration and the systemic exposure of the active ingredient tizoxanide.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 902-902
Author(s):  
Suzanne Delaney ◽  
Ann Arfsten ◽  
Sherin Halfon ◽  
Gail Siu ◽  
John Malinowski ◽  
...  

Abstract Factor Xa (fXa) inhibitors are being tested in the clinic for the prevention and treatment of deep vein thrombosis (DVT) following orthopedic surgery. The antithrombotic efficacy of these drug candidates has traditionally been established in animal models as it is not known whether fXa amidolytic activity, activated partial thromboplastin time (aPTT) or prothrombin time (PT) predict efficacious doses. The present study was designed to test the hypothesis that the potency of fXa inhibitors against fXa incorporated into the prothrombinase complex would predict in vivo antithrombotic efficacy. Eight fXa inhibitors from four structurally distinct chemical series with a range of activities against fXa were tested for their ability to inhibit the prothrombinase complex in human plasma. Thrombin generation and subsequent cleavage of a specific thrombin substrate was used as a measure of prothrombinase activity, inhibitory activity being defined by the concentration of inhibitor required to produce a 2-fold extension in the time to maximal thrombin production (2x lag). In vitro rabbit PTs were also determined. Inhibition in the rabbit DVT model was assessed as previously described (Thromb Haemost1994; 71:357) and related to plasma concentrations of drug. Agent fXa IC50 (nM) Prothrombinase 2x lag (μM) Plasma concentration in DVT (μM) Thrombosis inhibition (%) Rabbit PT 2x change (μM) PRT50034 0.5 0.18 0.06 94 7.0 PRT54681 1.3 0.22 1.14 37 2.7 PRT54676 0.7 0.24 1.65 47 1.7 PRT54004 0.4 0.25 1.04 47 1.0 PRT54456 0.8 0.34 3.39 41 1.5 PRT56848 4.4 0.92 5.2 11 4.7 PRT54955 3.5 1.35 4.6 19 8.8 PRT57106 8.2 1.66 9.2 0 64 All compounds inhibited soluble fXa by 50 % at concentrations less than 10 nM. However, the rank order of potencies for inhibition of soluble fXa differed from that required to inhibit the prothrombinase complex. There was also poor correlation between the 2x lag value for prothrombinase inhibition and the concentration required to achieve a 2x change in rabbit PT (r2 = 0.57). Neither the activities of fXa inhibition nor the change in rabbit PT predicted activity in the DVT model. In contrast, compounds could be broadly divided into 3 levels of efficacy for inhibition of in vivo thrombus growth depending on their potency in the in vitro prothrombinase assay. PRT50034 had the lowest 2x lag value of 0.18 μM and was the most potent inhibitor of in vivo thrombosis with 94 % inhibition at a plasma concentration of 65 nM. The second group of compounds, with 2x lag values in the prothrombinase assay ranging from 0.22 to 0.34 μM, inhibited in vivo thrombus formation by 37 to 47 % at plasma concentrations ranging from 1.04 to 3.39 μM. Compounds in the third category were the least potent prothrombinase inhibitors (2x lag values greater than 0.92 μM) and were unable to significantly inhibit in vivo thrombosis even at plasma concentrations of 9.2 μM. These data show that the 2x lag value obtained in the prothrombinase assay, and not inhibition of soluble fXa or extension of rabbit PT, is capable of predicting fXa inhibitor efficacy in the in vivo rabbit DVT model.


1971 ◽  
Vol 51 (2) ◽  
pp. 271-282 ◽  
Author(s):  
MARIETTA VÉRTES ◽  
R. J. B. KING

SUMMARY The uptake of [6,7-3H]oestradiol in vivo and in vitro by cell fractions from regions of rat brain and the anterior pituitary gland has been studied. Cytoplasmic and nuclear receptors were detected in anterior and posterior hypothalamus but not in brain cortex. After labelling in vivo, tissues took up [6,7-3H]oestradiol in the following order of magnitude: anterior pituitary > anterior hypothalamus > posterior hypothalamus > cortex. With the exception of the cortex, all extracts from mature tissues had a higher uptake/mg protein than did extracts from immature animals. In the in-vitro system, oestradiol-17β competed with [6,7-3H]oestradiol-17β in the hypothalamus whereas progesterone, testosterone and oestradiol-17α did not. In the pituitary, oestradiol-17α and 17β competed for binding sites. A single injection of testosterone propionate on the second day of life affected [6,7-3H]oestradiol binding in later life. By 28 days of age, the androgenized animals had a lower nuclear and higher cytoplasmic uptake of [6,7-3H]oestradiol in anterior hypothalamus. This effect was not seen in the posterior hypothalamus or cortex. Binding was decreased in all fractions from the pituitary. In mature animals (60 days old), binding fell in both nuclear and cytoplasmic fractions from anterior hypothalamus and pituitary. The nuclei from posterior hypothalamus also took up less [6,7-3H]oestradiol after androgenization. Androgenization affected specific binding in uteri at both 28 and 60 days of age.


2020 ◽  
pp. 1-9
Author(s):  
Tobias Kammerer ◽  
Philipp Groene ◽  
Sophia R. Sappel ◽  
Sven Peterss ◽  
Paula A. Sa ◽  
...  

<b><i>Introduction:</i></b> Tranexamic acid (TXA) is the standard medication to prevent or treat hyperfibrinolysis. However, prolonged inhibition of lysis (so-called “fibrinolytic shutdown”) correlates with increased mortality. A new viscoelastometric test enables bedside quantification of the antifibrinolytic activity of TXA using tissue plasminogen activator (TPA). <b><i>Materials and Methods:</i></b> Twenty-five cardiac surgery patients were included in this prospective observational study. In vivo, the viscoelastometric TPA test was used to determine lysis time (LT) and maximum lysis (ML) over 96 h after TXA bolus. Additionally, plasma concentrations of TXA and plasminogen activator inhibitor 1 (PAI-1) were measured. Moreover, dose effect curves from the blood of healthy volunteers were performed in vitro. Data are presented as median (25–75th percentile). <b><i>Results:</i></b> In vivo TXA plasma concentration correlated with LT (<i>r</i> = 0.55; <i>p</i> &#x3c; 0.0001) and ML (<i>r</i> = 0.62; <i>p</i> &#x3c; 0.0001) at all time points. Lysis was inhibited up to 96 h (LT<sub>TPA-test</sub>: baseline: 398 s [229–421 s] vs. at 96 h: 886 s [626–2,175 s]; <i>p</i> = 0.0013). After 24 h, some patients (<i>n</i> = 8) had normalized lysis, but others (<i>n</i> = 17) had strong lysis inhibition (ML &#x3c;30%; <i>p</i> &#x3c; 0.001). The high- and low-lysis groups differed regarding kidney function (cystatin C: 1.64 [1.42–2.02] vs. 1.28 [1.01–1.52] mg/L; <i>p</i> = 0.002) in a post hoc analysis. Of note, TXA plasma concentration after 24 h was significantly higher in patients with impaired renal function (9.70 [2.89–13.45] vs.1.41 [1.30–2.34] µg/mL; <i>p</i> &#x3c; 0.0001). In vitro, TXA concentrations of 10 µg/mL effectively inhibited fibrinolysis in all blood samples. <b><i>Conclusions:</i></b> Determination of antifibrinolytic activity using the TPA test is feasible, and individual fibrinolytic capacity, e.g., in critically ill patients, can potentially be measured. This is of interest since TXA-induced lysis inhibition varies depending on kidney function.


1970 ◽  
Vol 63 (4) ◽  
pp. 577-584 ◽  
Author(s):  
Junzo Kato

ABSTRACT The anterior, middle and posterior hypothalamus, the cortex cerebri, the anterior hypophysis, and the diaphragm of postpubertal rats at different phases of the oestrous cycle were incubated in vitro with tritiated 17β-oestradiol. Uptake of radioactivity by the anterior hypothalamus at prooestrus and oestrus was lower than that at dioestrus. In contrast no fluctuation in the concentration of the radioactivity in the other parts of brain, the hypophysis and muscle was observed during the oestrous cycle. These in vitro findings are consistent with the in vivo observations of cyclic changes in phase with the oestrous cycle of the amount of radioactive oestradiol taken up by the anterior hypothalamus following the injection of tritiated oestradiol (Kato et al. 1969b). Thus it is further suggested that the oestradiol receptor in the anterior hypothalamus of the rat is involved in the physiological regulation and maintenance of cyclic changes in the hypothalamo-pituitary system through the mechanism of action of feedback of oestrogen.


1987 ◽  
Vol 58 (03) ◽  
pp. 921-926 ◽  
Author(s):  
E Seifried ◽  
P Tanswell

SummaryIn vitro, concentration-dependent effects of rt-PA on a range of coagulation and fibrinolytic assays in thawed plasma samples were investigated. In absence of a fibrinolytic inhibitor, 2 μg rt-PA/ml blood (3.4 μg/ml plasma) caused prolongation of clotting time assays and decreases of plasminogen (to 44% of the control value), fibrinogen (to 27%), α2-antiplasmin (to 5%), FV (to 67%), FVIII (to 41%) and FXIII (to 16%).Of three inhibitors tested, a specific polyclonal anti-rt-PA antibody prevented interferences in all fibrinolytic and most clotting assays. D-Phe-Pro-Arg-CH2Cl (PPACK) enabled correct assays of fibrinogen and fibrinolytic parameters but interfered with coagulometric assays dependent on endogenous thrombin generation. Aprotinin was suitable only for a restricted range of both assay types.Most in vitro effects were observed only with rt-PA plasma concentrations in excess of therapeutic values. Nevertheless it is concluded that for clinical application, collection of blood samples on either specific antibody or PPACK is essential for a correct assessment of in vivo effects of rt-PA on the haemostatic system in patients undergoing fibrinolytic therapy.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 507
Author(s):  
Isabel Gonzalez-Alvarez ◽  
Marival Bermejo ◽  
Yasuhiro Tsume ◽  
Alejandro Ruiz-Picazo ◽  
Marta Gonzalez-Alvarez ◽  
...  

The purpose of this study was to predict in vivo performance of three oral products of Etoricoxib (Arcoxia® as reference and two generic formulations in development) by conducting in vivo predictive dissolution with GIS (Gastro Intestinal Simulator) and computational analysis. Those predictions were compared with the results from previous bioequivalence (BE) human studies. Product dissolution studies were performed using a computer-controlled multicompartmental dissolution device (GIS) equipped with three dissolution chambers, representing stomach, duodenum, and jejunum, with integrated transit times and secretion rates. The measured dissolved amounts were modelled in each compartment with a set of differential equations representing transit, dissolution, and precipitation processes. The observed drug concentration by in vitro dissolution studies were directly convoluted with permeability and disposition parameters from literature to generate the predicted plasma concentrations. The GIS was able to detect the dissolution differences among reference and generic formulations in the gastric chamber where the drug solubility is high (pH 2) while the USP 2 standard dissolution test at pH 2 did not show any difference. Therefore, the current study confirms the importance of multicompartmental dissolution testing for weak bases as observed for other case examples but also the impact of excipients on duodenal and jejunal in vivo behavior.


Sign in / Sign up

Export Citation Format

Share Document