Lack of long-term β-cell glucotoxicity in vitro in pancreatic islets isolated from two mouse strains (C57BL/6J; C57BL/KsJ) with different sensitivities of the β-cells to hyperglycaemia in vivo

1993 ◽  
Vol 136 (2) ◽  
pp. 289-296 ◽  
Author(s):  
C. Svensson ◽  
S. Sandler ◽  
C. Hellerström

ABSTRACT Previous studies have shown that 4 weeks after syngeneic transplantation of a suboptimal number of islets into either C57BL/6J (BL/6J) or C57BL/KsJ (BL/KsJ) diabetic mice there is an impaired insulin secretion by the perfused grafts. After normalization of the blood glucose level with a second islet graft, the BL/6J strain showed restored insulin secretion whilst that of the BL/KsJ strain remained impaired. The aim of the present work was to study the effects of glucose on the in-vitro function of islet β-cells from these two mouse strains, with different sensitivities of their β-cells to glucose in vivo. Isolated pancreatic islets from each strain were kept for 1 week in tissue culture at 5·6, 11, 28 or 56 mmol glucose/l and were subsequently analysed with regard to insulin release, (pro)-insulin and total protein biosynthesis, insulin, DNA and insulin mRNA contents and glucose metabolism. Islets from both strains cultured at 28 or 56 mmol glucose/l showed an increased accumulation of insulin in the culture medium and an enhanced glucose-stimulated insulin release compared with corresponding control islets cultured at 11 mmol glucose/l. After culture at either 5·6 or 56 mmol/l, rates of (pro)insulin biosynthesis were decreased in BL/KsJ islets in short-term incubations at 17 mmol glucose/l, whereas islets cultured at 56 mmol glucose/l showed a marked increase at 1·7 mmol glucose/l. In BL/6J islets, the (pro)insulin biosynthesis rates were similar to those of the BL/KsJ islets with one exception, namely that no decrease was observed at 56 mmol glucose/l. Islets of both strains showed a decreased insulin content after culture with 56 mmol glucose/l. Insulin mRNA content was increased in islets cultured in 28 or 56 mmol glucose/l from both mouse strains. Glucose metabolism showed no differences in the rates of glucose oxidation, however, in islets cultured in 56 mmol glucose/l the utilization of glucose was increased in both BL/6J and BL/KsJ animals. There were no differences in DNA content in islets cultured at different glucose concentrations, suggesting no enhancement of cell death. The present study indicates that, irrespective of genetic background, murine β-cells can adapt to very high glucose concentrations in vitro without any obvious signs of so-called glucotoxicity. Previously observed signs of glucotoxicity in vivo in BL/KsJ islets appear not to be related only to glucose but rather to an additional factor in the diabetic environment. Journal of Endocrinology (1993) 136, 289–296

2007 ◽  
Vol 193 (3) ◽  
pp. 367-381 ◽  
Author(s):  
Anthony J Weinhaus ◽  
Laurence E Stout ◽  
Nicholas V Bhagroo ◽  
T Clark Brelje ◽  
Robert L Sorenson

Glucokinase activity is increased in pancreatic islets during pregnancy and in vitro by prolactin (PRL). The underlying mechanisms that lead to increased glucokinase have not been resolved. Since glucose itself regulates glucokinase activity in β-cells, it was unclear whether the lactogen effects are direct or occur through changes in glucose metabolism. To clarify the roles of glucose metabolism in this process, we examined the interactions between glucose and PRL on glucose metabolism, insulin secretion, and glucokinase expression in insulin 1 (INS-1) cells and rat islets. Although the PRL-induced changes were more pronounced after culture at higher glucose concentrations, an increase in glucose metabolism, insulin secretion, and glucokinase expression occurred even in the absence of glucose. The presence of comparable levels of insulin secretion at similar rates of glucose metabolism from both control and PRL-treated INS-1 cells suggests the PRL-induced increase in glucose metabolism is responsible for the increase in insulin secretion. Similarly, increases in other known PRL responsive genes (e.g. the PRL receptor, glucose transporter-2, and insulin) were also detected after culture without glucose. We show that the upstream glucokinase promoter contains multiple STAT5 binding sequences with increased binding in response to PRL. Corresponding increases in glucokinase mRNA and protein synthesis were also detected. This suggests the PRL-induced increase in glucokinase mRNA and its translation are sufficient to account for the elevated glucokinase activity in β-cells with lactogens. Importantly, the increase in islet glucokinase observed with PRL is in line with that observed in islets during pregnancy.


2020 ◽  
Vol 21 (13) ◽  
pp. 4668
Author(s):  
Rebecca Scheuer ◽  
Stephan Ernst Philipp ◽  
Alexander Becker ◽  
Lisa Nalbach ◽  
Emmanuel Ampofo ◽  
...  

The regulation of insulin biosynthesis and secretion in pancreatic β-cells is essential for glucose homeostasis in humans. Previous findings point to the highly conserved, ubiquitously expressed serine/threonine kinase CK2 as having a negative regulatory impact on this regulation. In the cell culture model of rat pancreatic β-cells INS-1, insulin secretion is enhanced after CK2 inhibition. This enhancement is preceded by a rise in the cytosolic Ca2+ concentration. Here, we identified the serine residues S2362 and S2364 of the voltage-dependent calcium channel CaV2.1 as targets of CK2 phosphorylation. Furthermore, co-immunoprecipitation experiments revealed that CaV2.1 binds to CK2 in vitro and in vivo. CaV2.1 knockdown experiments showed that the increase in the intracellular Ca2+ concentration, followed by an enhanced insulin secretion upon CK2 inhibition, is due to a Ca2+ influx through CaV2.1 channels. In summary, our results point to a modulating role of CK2 in the CaV2.1-mediated exocytosis of insulin.


1992 ◽  
Vol 262 (2) ◽  
pp. E150-E154
Author(s):  
Y. Sako ◽  
D. Eizirik ◽  
V. Grill

We studied the impact of a defined degree of long-term hyperglycemia with or without blockade of attendant insulin release on subsequent B-cell secretory responsiveness and biosynthesis. Nondiabetic rats were infused for 48 h with glucose to produce marked hyperglycemia (21.3 +/- 0.5 mmol/l). Comparable levels of hyperglycemia were upheld when additions were made to this protocol. Hyperglycemia increased plasma insulin 12-fold but depressed glucose (27 mmol/l)-induced insulin secretion in vitro (isolated islets) by 67% compared with saline-infused rats. Addition of diazoxide infusion during hyperglycemia completely inhibited the hyperglycemia-induced rise in plasma insulin but enhanced glucose-induced insulin release in vitro eightfold compared with islets from rats infused with glucose alone. Addition of insulin (2 U/day) to the diazoxide plus hyperglycemia protocol inhibited the secretory response to glucose in vitro by 46% (P less than 0.05). Proinsulin biosynthesis was enhanced by 67% in islets from rats infused with glucose alone; this effect was paralleled by a similar increase in preproinsulin mRNA. Diazoxide in vivo did not affect these stimulatory effects of hyperglycemia on insulin biosynthesis; however, insulin infusion in vivo abolished the hyperglycemia-induced increase in proinsulin biosynthesis. We conclude that impairment by hyperglycemia of glucose-induced insulin secretion occurs concomitant with stimulation of biosynthesis. Uncoupling of glucose stimulus from secretion crucially affects subsequent secretory responsiveness but not biosynthesis. Insulin biosynthesis is depressed by direct or indirect effects of circulating insulin.


2017 ◽  
Vol 233 (1) ◽  
pp. 53-64 ◽  
Author(s):  
Rebecca L Hull ◽  
Joshua R Willard ◽  
Matthias D Struck ◽  
Breanne M Barrow ◽  
Gurkirat S Brar ◽  
...  

Mouse models are widely used for elucidating mechanisms underlying type 2 diabetes. Genetic background profoundly affects metabolic phenotype; therefore, selecting the appropriate model is critical. Although variability in metabolic responses between mouse strains is now well recognized, it also occurs within C57BL/6 mice, of which several substrains exist. This within-strain variability is poorly understood and could emanate from genetic and/or environmental differences. To better define the within-strain variability, we performed the first comprehensive comparison of insulin secretion from C57BL/6 substrains 6J, 6JWehi, 6NJ, 6NHsd, 6NTac and 6NCrl. In vitro, glucose-stimulated insulin secretion correlated with Nnt mutation status, wherein responses were uniformly lower in islets from C57BL/6J vs C57BL/6N mice. In contrast, in vivo insulin responses after 18 weeks of low fat feeding showed no differences among any of the six substrains. When challenged with a high-fat diet for 18 weeks, C57BL/6J substrains responded with a similar increase in insulin release. However, variability was evident among C57BL/6N substrains. Strikingly, 6NJ mice showed no increase in insulin release after high fat feeding, contributing to the ensuing hyperglycemia. The variability in insulin responses among high-fat-fed C57BL/6N mice could not be explained by differences in insulin sensitivity, body weight, food intake or beta-cell area. Rather, as yet unidentified genetic and/or environmental factor(s) are likely contributors. Together, our findings emphasize that caution should be exercised in extrapolating data from in vitro studies to the in vivo situation and inform on selecting the appropriate C57BL/6 substrain for metabolic studies.


1990 ◽  
Vol 258 (6) ◽  
pp. E975-E984 ◽  
Author(s):  
G. Z. Fadda ◽  
M. Akmal ◽  
L. G. Lipson ◽  
S. G. Massry

Indirect evidence indicates that parathyroid hormone (PTH) interacts with pancreatic islets and modulates their insulin secretion. This property of PTH has been implicated in the genesis of impaired insulin release in chronic renal failure. We examined the direct effect of PTH-(1-84) and PTH-(1-34) on insulin release using in vitro static incubation and dynamic perifusion of pancreatic islets from normal rats. Both moieties of the hormone stimulated in a dose-dependent manner glucose-induced insulin release but higher doses inhibited glucose-induced insulin release. This action of PTH was modulated by the calcium concentration in the media. The stimulatory effect of PTH was abolished by its inactivation and blocked by its antagonist [Tyr-34]bPTH-(7-34)NH2. PTH also augmented phorbol ester (TPA)-induced insulin release, stimulated adenosine 3',5'-cyclic monophosphate (cAMP) generation by pancreatic islets, and significantly increased (+50 +/- 2.7%, P less than 0.01) their cytosolic calcium. Verapamil inhibited the stimulatory effect of PTH on insulin release. The data show that 1) pancreatic islets are a PTH target and may have PTH receptors, 2) stimulation of glucose-induced insulin release by PTH is mediated by a rise in cytosolic calcium, 3) stimulation of cAMP production by PTH and a potential indirect activation of protein kinase C by PTH may also contribute to the stimulatory effect on glucose-induced insulin release, and 4) this action of PTH requires calcium in incubation or perifusion media.


2018 ◽  
Vol 37 (12) ◽  
pp. 1268-1281 ◽  
Author(s):  
A Ahangarpour ◽  
S Alboghobeish ◽  
AA Oroojan ◽  
MA Dehghani

The growing use of carbon nanotubes (CNTs) emphasizes the importance of its potential toxic effects on the human health. Previous studies proved that CNTs caused oxidative stress and decreased cell viability. On the other hand, reactive oxygen species (ROS) and oxidative stress impaired β-cell functions and reduced the insulin secretion. However, there is not any study on the effects of CNTs on islets and β-cells. Therefore, the present study aimed to evaluate the effects of single-walled CNTs (SWCNTs) on oxidative stress in islets in addition to the protective effects of naringin (NRG) as an antioxidant . We examined the effects of SWCNTs and naringin on islets by 3,4 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay; measurement of insulin secretion, ROS, and malondialdehyde (MDA); activities of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) peroxidase (GSH-Px); and content of GSH and mitochondrial membrane potential (MMP). The MTT assay demonstrated that decreased viability of islets cells was dose-dependent with exposure to SWCNTs. Further studies revealed that SWCNTs decreased insulin secretion and MMP, induced the formation of ROS, increased the level of MDA, and decreased the activities of SOD, GSH-Px, and CAT and content of GSH. Furthermore, the pretreatment of islets with naringin significantly reverted back these changes. These findings revealed that SWCNTs might induce the oxidative stress to pancreatic islets, causing the occurrence of diabetes, and the protective effects of naringin that was mediated by augmentation of the antioxidant defense system of islets. Our research indicated the necessity for further in vivo and in vitro researches on the effects of SWCNTs and naringin on diabetes.


1986 ◽  
Vol 251 (1) ◽  
pp. E86-E91 ◽  
Author(s):  
M. T. Bihoreau ◽  
A. Ktorza ◽  
A. Kervran ◽  
L. Picon

The effects of gestational hyperglycemia on B-cell function were studied in near-term fetuses from unrestrained pregnant rats made slightly or highly hyperglycemic using continuous glucose infusion during the last week of pregnancy. Pancreatic and plasma insulin and insulin secretion in vitro were studied in the fetuses. Compared with controls, slightly hyperglycemic fetuses showed increased pancreatic and plasma insulin concentrations and similar insulin release in response to glucose in vitro. In highly hyperglycemic fetuses, pancreatic and plasma insulin concentrations were unchanged compared with controls, and insulin release in vitro was insensitive to glucose and to the mixture glucose plus theophylline. These results confirm that glucose is able to stimulate insulin secretion in normal or slightly hyperglycemic fetuses and suggest that severe hyperglycemia per se, without association of other metabolic disorders or toxic injuries, profoundly alters the stimulus-secretion coupling of the fetal rat B-cell.


2012 ◽  
Vol 302 (4) ◽  
pp. E403-E408 ◽  
Author(s):  
Mika Bando ◽  
Hiroshi Iwakura ◽  
Hiroyuki Ariyasu ◽  
Hiroshi Hosoda ◽  
Go Yamada ◽  
...  

Whereas ghrelin is produced primarily in the stomach, a small amount of it is produced in pancreatic islets. Although exogenous administration of ghrelin suppresses insulin secretion in vitro or in vivo, the role of intraislet ghrelin in the regulation of insulin secretion in vivo remains unclear. To understand the physiological role of intraislet ghrelin in insulin secretion and glucose metabolism, we developed a transgenic (Tg) mouse model, rat insulin II promoter ghrelin-internal ribosomal entry site-ghrelin O-acyl transferase (RIP-GG) Tg mice, in which mouse ghrelin cDNA and ghrelin O-acyltransferase are overexpressed under the control of the rat insulin II promoter. Although pancreatic desacyl ghrelin levels were elevated in RIP-GG Tg mice, pancreatic ghrelin levels were not altered in animals on a standard diet. However, when Tg mice were fed a medium-chain triglyceride-rich diet (MCTD), pancreatic ghrelin levels were elevated to ∼16 times that seen in control animals. It seems likely that the gastric ghrelin cells possess specific machinery to provide the octanoyl acid necessary for ghrelin acylation but that this machinery is absent from pancreatic β-cells. Despite the overexpression of ghrelin, plasma ghrelin levels in the portal veins of RIP-GG Tg mice were unchanged from control levels. Glucose tolerance, insulin secretion, and islet architecture in RIP-GG Tg mice were not significantly different even when the mice were fed a MCTD. These results indicate that intraislet ghrelin does not play a major role in the regulation of insulin secretion in vivo.


1978 ◽  
Vol 176 (2) ◽  
pp. 619-621 ◽  
Author(s):  
A Andersson

To test further the hypothesis that ribonucleosides stimulate insulin secretion and biosynthesis by producing metabolic signals, the effects of starvation on adenosine-stimulated insulin production and the oxidation of adenosine by isolated mouse pancreatic islets were examined. No direct correlation was found between the metabolic flux and insulin secretion, since the starvation-induced impairment of the adenosine-stimulated insulin secretion was accompanied by an increased rate of adenosine oxidation. Adenosine-stimulated insulin biosynthesis was, however, unaffected by starvation.


2020 ◽  
Author(s):  
Akansha Mishra ◽  
Siming Liu ◽  
Joseph Promes ◽  
Mikako Harata ◽  
William Sivitz ◽  
...  

Perilipin 2 (PLIN2) is the lipid droplet (LD) protein in β cells that increases under nutritional stress. Down-regulation of PLIN2 is often sufficient to reduce LD accumulation. To determine whether PLIN2 positively or negatively affects β cell function under nutritional stress, PLIN2 was down-regulated in mouse β cells, INS1 cells, and human islet cells. β cell specific deletion of PLIN2 in mice on a high fat diet reduced glucose-stimulated insulin secretion (GSIS) in vivo and in vitro. Down-regulation of PLIN2 in INS1 cells blunted GSIS after 24 h incubation with 0.2 mM palmitic acids. Down-regulation of PLIN2 in human pseudoislets cultured at 5.6 mM glucose impaired both phases of GSIS, indicating that PLIN2 is critical for GSIS. Down-regulation of PLIN2 decreased specific OXPHOS proteins in all three models and reduced oxygen consumption rates in INS1 cells and mouse islets. Moreover, we found that PLIN2 deficient INS1 cells increased the distribution of a fluorescent oleic acid analog to mitochondria and showed signs of mitochondrial stress as indicated by susceptibility to fragmentation and alterations of acyl-carnitines and glucose metabolites. Collectively, PLIN2 in β cells have an important role in preserving insulin secretion, β cell metabolism and mitochondrial function under nutritional stress.


Sign in / Sign up

Export Citation Format

Share Document