Characterization and localization of a putative oxytocin receptor in the cervix of the oestrous ewe

1994 ◽  
Vol 142 (3) ◽  
pp. 397-405 ◽  
Author(s):  
E L Matthews ◽  
V J Ayad

Abstract The purpose of the present study was to investigate the presence of high-affinity oxytocin-binding sites (putative oxytocin receptors) in the cervix of the non-pregnant ewe. [3H]Oxytocin binding to the peripheral layers of cervical tissue (comprising the serosal layer and the least dense collagenous and muscular layers) and the remaining dense collagenous cervical tissue were studied separately. [3H] Oxytocin-binding sites were detected in membrane fractions prepared from both of these regions, but binding to the peripheral cervix was variable and binding site concentrations were low, hence these were not characterized further. A high-affinity oxytocin-binding site, having a dissociation constant of 1·8 nmol/l, was characterized in the dense collagenous regions of the cervix of ewes killed during the oestrous period. Similar dissociation constants were determined for [Arg8]-vasopressin and the oxytocin-specific agonist [Thr4, Gly7]-oxytocin in competition studies. [3H] Oxytocin binding to peripheral cervical tissue and to the dense collagenous cervix was generally low or undetectable during the luteal phase, but increased in both tissues around the time of luteolysis. Although specific binding to both tissues was variable during the oestrous period, it was higher at this time than during the luteal phase. [3H] Oxytocin-binding site concentrations were also found to be higher within the inner dense collagenous cervix of oestrous ewes than of pregnant, ovariectomized or anoestrous animals. During the oestrous cycle, oxytocin-binding site concentrations reached a maximum in the dense collagenous cervical tissue on the day of oestrus (141·8 ±44 (s.e.m.) fmol/mg protein), showing a general decline during the following days back to luteal phase values. This compared with concentrations of 513·3 ±132·1 and 216·1 ± 13·9 fmol/mg protein, measured for comparative purposes in endometrial and myometrial membrane preparations, respectively, on the day of oestrus in the same group of ewes. However, in membrane preparations of peripheral cervical tissue higher concentrations were measured on day 14 than on the following 2 days and maximal concentrations were not reached until the day after oestrus (52·7 ± 4·2 fmol/mg protein). Concentrations were maintained at similar values during the subsequent 2 days and significant specific binding was still measurable in both regions of the cervix on day 5. The localization of oxytocin-binding sites within dense collagenous cervical tissue was investigated autoradiographically using the 125I-labelled specific oxytocin receptor antagonist [1(β-mercapto-β,β-cyclopentamethylene propionic acid), 2-(ortho-methyl)-Tyr2, Thr4, Orn8, Tyr9 -NH2]-vasotocin. The only clear specific labelling was localized to the luminal epithelium of the uterine section of the cervix of oestrous ewes, with labelling in ewes in the luteal phase clearly reduced or absent. The results demonstrate the presence of a high-affinity oxytocin-binding site within the cervix of the oestrous ewe which is associated with secretory cells and which undergoes similar changes in concentration during the oestrous cycle to uterine oxytocin receptor sites. The significance of this novel putative site of oxytocin action remains to be established. Journal of Endocrinology (1994) 142, 397–405

1991 ◽  
Vol 128 (2) ◽  
pp. 187-NP ◽  
Author(s):  
V. J. Ayad ◽  
S. E. F. Guldenaar ◽  
D. C. Wathes

ABSTRACT Some of the binding characteristics of a novel oxytocin receptor ligand 125I-labelled [1-(β-mercapto-β, β-cyclopentamethylene propionic acid), 2-(ortho-methyl)-Tyr2,Thr4,Orn8,Tyr9-NH2]-vasotocin ([125I]OTA) have been determined in the sheep uterus. The compound was subsequently used for the autoradiographic localization of oxytocin receptors in the uterus and oviduct of the ewe. Specific binding of [125I]OTA to crude membrane fractions of ovine endometrium was time-dependent and was unaffected by the addition of cations to incubation media. Endometrial membranes contained a single population of saturable, high-affinity binding sites for the iodinated ligand (dissociation constant (Kd) 0·23±0·08 nmol/l) and unlabelled oxytocin competed with [125I]OTA for binding sites with high affinity (Kd 1·29±0·4 nmol/l) in the presence of Mg2+ In contrast, unlabelled OTA was able to compete with high affinity (Kd 1·13±0·16 nmol/l) in the absence of cation. Competition studies with a number of oxytocin analogues and related peptides and the tissue distribution of [125I]OTA binding sites also indicated that [125I]OTA bound to the ovine oxytocin receptor. This was further validated by autoradiographic studies which showed specific labelling with [125I]OTA to be greater to uterus and oviduct obtained from ewes which had been killed within 2 days of oestrus than to similar tissue from ewes killed during the luteal phase. In both the ampullary and isthmic regions of the oviduct and the myometrium, [125I]OTA binding sites were confined to smooth muscle. Endometrial binding sites for [125I]OTA were consistently located on the luminal epithelium and epithelial cells lining secretory glands. In addition, in one ewe which had been killed 2 days after cloprostenol treatment, stromal cells were labelled in a caruncular region of the endometrium. The consistency of this observation between similar animals remains to be determined. The autoradiographic technique demonstrated appears sufficiently sensitive to allow further studies into the distribution of the endometrial oxytocin receptor throughout the oestrous cycle, and into its regulation at luteolysis and during the establishment of pregnancy. Journal of Endocrinology (1991) 128, 187–195


1991 ◽  
Vol 274 (3) ◽  
pp. 861-867 ◽  
Author(s):  
R A J Challiss ◽  
A L Willcocks ◽  
B Mulloy ◽  
B V L Potter ◽  
S R Nahorski

1. The properties of specific Ins(1,4,5)P3- and Ins(1,3,4,5)P4-binding sites have been compared in a crude ‘P2’ cerebellar membrane fraction. 2. A homogeneous population of [3H]Ins(1,4,5)P3-binding sites was present (KD 23.1 +/- 3.6 nM) at high density (Bmax. 11.9 +/- 1.8 pmol/mg of protein); whereas data obtained for [32P]Ins(1,3,4,5)P4 specific binding were best fitted to a two-site model, the high-affinity binding component (KD 2.6 +/- 0.7 nM) constituted 64.2 +/- 4.3% of the total population and was present at relatively low density (Bmax. 187 +/- 27 fmol/mg of protein). 3. The two high-affinity inositol polyphosphate-binding sites exhibited markedly different pH optima for radioligand binding, allowing the two sites to be independently investigated. At pH 8.0, [3H]Ins(1,4,5)P3 binding was maximal, whereas [32P]Ins(1,3,4,5)P4 specific binding was very low; conversely, at pH 5.0, [32P]Ins(1,3,4,5)P4 binding was maximal, whereas [3H]Ins(1,4,5)P3 binding was undetectably low. 4. Both inositol polyphosphate-binding sites exhibited marked positional and stereo-specificity. Of the analogues studied, only phosphorothioate substitution to form inositol 1,4,5-trisphosphorothioate was tolerated at the Ins(1,4,5)P3-binding site, with only a 2-3-fold loss of binding activity. Addition of a glyceroyl moiety at the 1-phosphate position or addition of further phosphate substituents at the 3- or 6-positions caused dramatic losses in displacing activity. Similarly, complete phosphorothioate substitution of Ins(1,3,4,5)P4 caused an approx. 6-fold loss of binding activity at the [32P]Ins(1,3,4,5)P4-binding site, whereas Ins(1,4,5,6)P4, Ins(1,3,4,6)P4, Ins(1,4,5)P3 and Ins(1,3,4,5,6)P5 were bound at least 100-fold weaker at this site. Therefore, only the phosphorothioate derivatives retained high affinity and selectivity for the two inositol polyphosphate-binding sites. 5. Heparin and pentosan polysulphate were potent but non-selective inhibitors at Ins(1,4,5)P3- and Ins(1,3,4,5)P4-binding sites. N-Desulphation (with or without N-reacetylation) of heparin decreased inhibitory activity at the Ins(1,4,5)P3-, but not at the Ins(1,3,4,5)P4-binding site; however, the selectivity of this effect was only about 4-fold. O- and N-desulphated N-reacetylated heparin was essentially inactive at both sites. 6. The results are discussed with respect to the separate identities of the inositol polyphosphate-binding sites.


1990 ◽  
Vol 124 (3) ◽  
pp. 353-359 ◽  
Author(s):  
V. J. Ayad ◽  
S. A. McGoff ◽  
D. C. Wathes

ABSTRACT The presence of oxytocin receptors in ovine oviduct has been investigated. High-affinity binding sites for [3H]oxytocin were detected in crude membrane fractions prepared from the oviducts of ewes killed during the oestrous period. The dissociation constant calculated for these sites in competition studies was 1·7 nmol/l. Similar dissociation constants were calculated for [Arg8]-vasopressin and the oxytocin-specific agonists [Gly7]-oxytocin and [Thr4, Gly7]-oxytocin, indicating that these sites represent oxytocin receptors. At least one additional site of lower affinity and undetermined identity was present. The relative concentration of oxytocin-binding sites in preparations of oviduct membranes were estimated in ewes killed at different stages of the oestrous cycle using a single concentration of [3H]oxytocin. Binding was low during the luteal phase of the cycle but increased to a maximum at oestrus (77·7 fmol/mg protein). Binding fell after ovulation, reaching what appeared to be basal concentrations by the early luteal stage of the cycle. Binding to oviductal membranes from prepubertal, anoestrous and pregnant ewes was also low, but in anoestrous animals which had been treated with progesterone and oestrogen it was similar to values measured in ewes at oestrus. These results are consistent with the existence of oviductal oxytocin receptors which are regulated by ovarian steroids. We conclude that oxytocin receptors are present in the oviduct of the ewe around the time of ovulation. The significance of oxytocin to events taking place in the oviduct at this time remains to be determined. Journal of Endocrinology (1990) 124, 353–359


1988 ◽  
Vol 116 (2) ◽  
pp. 169-177 ◽  
Author(s):  
B. H. Breier ◽  
P. D. Gluckman ◽  
J. J. Bass

ABSTRACT The binding of bovine GH (bGH) to hepatic membranes obtained from steers on either high (3% dry matter of body weight per day) or low (1% dry matter of body weight per day) planes of nutrition with or without an oestradiol-17β implant was studied (n = 5 per group). Binding studies were performed on both crude membrane homogenates and on 100 000 g microsomal membrane fractions; identical results were obtained using both preparations. In all four groups of animals, linear Scatchard plots were obtained, but following pretreatment of the membranes with MgCl2 to remove endogenously bound hormone, curvilinear plots were obtained in the groups on the high plane of nutrition. Analysis of these curves suggested the presence of a high- and low-affinity binding site, the high-affinity site being fully occupied in the absence of MgCl2 pretreatment. The specific binding of bGH in MgCl2-pretreated crude membranes was greater (P < 0·01) in well-fed steers (14·8 ± 1·6%) than in poorly fed steers (9·8 ± 0·9%). Scatchard analysis showed this to be due to the presence of a high-affinity site (dissociation constant (Kd) = 11·6 ± 3·3 pmol/l) in the well-fed animals only. In addition, there was an increase (P < 0·01) in the affinity, but not in the capacity, of the low-affinity site (Kd = 106·4 ± 22·8 pmol/l in well-fed steers and 197·0 ± 23·8 pmol/l in poorly fed steers). Oestradiol treatment was associated with an increase (P < 0·01) in specific binding at both planes of nutrition, but binding was higher (P < 0·01) in well-fed (24·8 ± 2·9%) than in poorly fed (15·6 ± 3·7%) steers. Scatchard analysis after MgCl2 pretreatment again showed a curvilinear plot at the high and a linear plot at the low nutritional plane. The effect of oestradiol was to increase (P < 0·001) the capacity of the high-affinity site from 1·87 ± 0·61 pmol/100 mg in the control well-fed group to 6·56 ± 1 ·2 pmol/100 mg. The capacity of the low-affinity site was increased (P < 0·01) from 20·1 ± 2·6 to 30·1 ± 3·2 pmol/100 mg in the well-fed group, with a similar change in the poorly fed group. Oestradiol had no effect on the apparent affinity of either binding site. These studies demonstrate a heterogeneity of somatotrophic binding sites of hepatic membranes in steers. The presence of a high-affinity site is determined by nutritional status, whereas oestradiol primarily affects receptor capacity. Thus nutrition and oestradiol have independent and qualitatively different effects on somatotrophic binding. As the rate of weight gain correlated (P < 0·01) with the capacity of the high-affinity site, it is suggested that somatotrophic receptor modulation is a primary factor in the regulation of somatic growth in the ruminant. J. Endocr. (1988) 116, 169–177


1986 ◽  
Vol 6 (4) ◽  
pp. 463-470 ◽  
Author(s):  
Rajesh N. Kalaria ◽  
Sami I. Harik

We studied, by ligand binding methods, the two adenosine receptors, A, and A2, in rat and pig cerebral microvessels and pig choroid plexus. Ligand binding to cerebral microvessels was compared with that to membranes of the cerebral cortex. [3H]Cyclohexyladenosine and [3H]l-phenylisopropyladenosine were the ligands used for A1-receptors, and [3H]5'- N-ethylcarboxamide adenosine ([3H]NECA) was used to assess A2-receptors. We report that cerebral microvessels and choroid plexus exhibit specific [3H]NECA binding, but have no appreciable A1-receptor ligand binding sites. Specific binding of [3H]NECA to cerebral microvessels, choroid plexus, and cerebral cortex was saturable and suggested the existence of two classes of A2-receptor sites: high-affinity ( Kd ∼ 250 n M) and low-affinity ( Kd ∼ 1–2 μ M) sites. The Kd and Bmax of NECA binding to cerebral microvessels and cerebral cortex were similar within each species. Our results, indicating the existence of A2-receptors in cerebral microvessels, are consistent with results of increased adenylate cyclase activity by adenosine and some of its analogues in these microvessels.


1984 ◽  
Vol 223 (3) ◽  
pp. 659-671 ◽  
Author(s):  
J McQueen ◽  
G D Murray ◽  
P F Semple

Specific binding sites of high affinity and low capacity for 125I-angiotensin II have been identified in a membrane fraction derived from arterial arcades of the rat mesentery. Heterogeneity of binding sites and extensive tracer degradation necessitated the use of nonlinear regression methods for the analysis of radioligand binding data. Forward and reverse rate constants for the high affinity sites obtained by three experimental approaches were in good agreement and gave a dissociation equilibrium constant (Kd) of 19-74 pM (95% confidence interval). Affinities for a number of angiotensin-related peptides calculated from competitive binding curves were in the order 125I-angiotensin II = angiotensin II greater than angiotensin III greater than [Sar1,Ile8]angiotensin II greater than [Sar1,Gly8]angiotensin II. Angiotensin I and biochemically unrelated peptides had virtually no effect on binding of tracer angiotensin II. The divalent cations Mn2+, Mg2+ and Ca2+ stimulated 125I-angiotensin II binding at concentrations of 2-10 mM, as did Na+ at 50-100 mM. In the presence of Na+ or Li+, K+ had a biphasic effect. The chelating agents EDTA and EGTA were inhibitory, as were the thiol reagents dithiothreitol and cysteine. This study defined angiotensin II binding sites in a vascular target tissue of sufficiently high affinity to interact rapidly with plasma angiotensin II at physiological concentrations.


2008 ◽  
Vol 412 (1) ◽  
pp. 103-112 ◽  
Author(s):  
Doreen Thor ◽  
Angela Schulz ◽  
Thomas Hermsdorf ◽  
Torsten Schöneberg

GPCRs (G-protein-coupled receptors) exist in a spontaneous equilibrium between active and inactive conformations that are stabilized by agonists and inverse agonists respectively. Because ligand binding of agonists and inverse agonists often occurs in a competitive manner, one can assume an overlap between both binding sites. Only a few studies report mutations in GPCRs that convert receptor blockers into agonists by unknown mechanisms. Taking advantage of a genetically modified yeast strain, we screened libraries of mutant M3Rs {M3 mAChRs [muscarinic ACh (acetylcholine) receptors)]} and identified 13 mutants which could be activated by atropine (EC50 0.3–10 μM), an inverse agonist on wild-type M3R. Many of the mutations sensitizing M3R to atropine activation were located at the junction of intracellular loop 3 and helix 6, a region known to be involved in G-protein coupling. In addition to atropine, the pharmacological switch was found for other M3R blockers such as scopolamine, pirenzepine and oxybutynine. However, atropine functions as an agonist on the mutant M3R only when expressed in yeast, but not in mammalian COS-7 cells, although high-affinity ligand binding was comparable in both expression systems. Interestingly, we found that atropine still blocks carbachol-induced activation of the M3R mutants in the yeast expression system by binding at the high-affinity-binding site (Ki ∼10 nM). Our results indicate that blocker-to-agonist converting mutations enable atropine to function as both agonist and antagonist by interaction with two functionally distinct binding sites.


1991 ◽  
Vol 11 (7) ◽  
pp. 3642-3651 ◽  
Author(s):  
C Devlin ◽  
K Tice-Baldwin ◽  
D Shore ◽  
K T Arndt

The major in vitro binding activity to the Saccharomyces cerevisiae HIS4 promoter is due to the RAP1 protein. In the absence of GCN4, BAS1, and BAS2, the RAP1 protein binds to the HIS4 promoter in vivo but cannot efficiently stimulate HIS4 transcription. RAP1, which binds adjacently to BAS2 on the HIS4 promoter, is required for BAS1/BAS2-dependent activation of HIS4 basal-level transcription. In addition, the RAP1-binding site overlaps with the single high-affinity HIS4 GCN4-binding site. Even though RAP1 and GCN4 bind competitively in vitro, RAP1 is required in vivo for (i) the normal steady-state levels of GCN4-dependent HIS4 transcription under nonstarvation conditions and (ii) the rapid increase in GCN4-dependent steady-state HIS4 mRNA levels following amino acid starvation. The presence of the RAP1-binding site in the HIS4 promoter causes a dramatic increase in the micrococcal nuclease sensitivity of two adjacent regions within HIS4 chromatin: one region contains the high-affinity GCN4-binding site, and the other region contains the BAS1- and BAS2-binding sites. These results suggest that RAP1 functions at HIS4 by increasing the accessibility of GCN4, BAS1, and BAS2 to their respective binding sites when these sites are present within chromatin.


1977 ◽  
Author(s):  
G. Marguerie

The calcium binding properties of bovin fibrinogen have been studied using equilibrium dialysis method. At pH 7.5 fibrinogen has 3 specific calcium binding sites of high affinity and several non specific binding sites of low affinity. Direct titration of the calcium induced proton release indicates that the binding center is a chelate. Thermal an acid denaturation is found to be markedly influenced by the presence of Ca++, suggesting that structural features are related to the binding. However the circular dichroism spectra show that no generalized conformational change is induced when Ca++ is bound to the protein.The plasminic digestion of fibrinogen is also found to be specificaly influenced by Ca++. The velocity of the initial cleavages is slightly reduced in the presence of calcium. It is therefore suggested that the C-terminal part of the Aα chain is involved in the binding.Considering the dimeric structure of the fibrinogen molecule, the presence of only 3 calcium binding sites of high affinity suggests the existence of “salt bridges” between the constitutive polypeptide chains.


1987 ◽  
Author(s):  
C M Chesney ◽  
D D Pifer

Gel filtered human platelets (GFP) collected in Tyrode's buffer containing 0.5 mM Ca+2, ImM Mg+2, and 0.35% albumin exhibit high affinity binding of 3H-PAF with a Kd of 0.109 α 0.029 nM (mean α SD; n=13) and 267 α 70 sites per platelet. When fibrinogen (1.67 mg/ml final concentration) is added to these GFP preparations biphasic aggregation is observed with PAF (4 nM). Normal aggregation is also observed with other platelet agonists including ADP, epinephrine, collagen, arachidonic acid, A23187 and thrombin. If GFP is prepared without added Ca+2 or Mg+2 in the presence of 3mM EDTA, platelets do not aggregate in response to PAF. However the number of specific binding sites remains unchanged (387 per platelet) with some decrease in affinity of binding (Kd = 0.2l4nM). In the presence of ImM Mg+2 there is no significant difference in binding kinetics over a range of Ca+2 concentrations (0-2mM). On the other hand the calcium channel blocker verapamil (5-10uM) exhibits competitive inhibition of 3H-PAF as analyzed by Lineweaver-Burk plots. Specific binding of 3H-PAF to GFP in the presence of ImM Mg+2 and ImM EGTA shows Kd of 0.l66nM but with increase in specific binding sites to 665. Despite increase in number of sites and no change in binding affinity, GFP under these conditions does not exhibit platelet aggregation with PAF in doses up to 80 nM.From these data it appears that external Ca+2 is not necessary for specific binding of 3H-PAF to its high affinity receptor. However, calcium does appear to be necessary for second wave aggregation with PAF. While Mg+2 appears to enhance 3H-PAF binding to platelets Mg+2 cannot substitute for Ca+2 in PAF induced platelet aggregation. Although verapamil appears to competitively inhibit binding of PAF to GFP it is not clear whether the inhibition is due to competition at or near the actual PAF receptor or at a site involving the calcium channel.


Sign in / Sign up

Export Citation Format

Share Document