scholarly journals LH/chorionic gonadotropin signaling pathway involves protein tyrosine phosphatase activity downstream of protein kinase A activation: evidence of an obligatory step in steroid production by Leydig cells

2001 ◽  
Vol 170 (2) ◽  
pp. 403-411 ◽  
Author(s):  
FC Maciel ◽  
C Poderoso ◽  
A Gorostizaga ◽  
C Paz ◽  
EJ Podesta

Our recent reports indicate that protein tyrosine phosphorylation is an obligatory component of the mechanism of action of ACTH in its stimulatory action of corticosteroid production in adrenal zona fasciculata (ZF). The role of protein tyrosine phosphatase (PTP) activity in the regulation of steroidogenesis by LH/chorionic gonadotropin (CG) was tested using cell-permeable PTP inhibitors. Thus, PTP inhibition blocks LH- and 8-bromo-cAMP-stimulated testosterone production by Leydig cells without affecting 22(R)OH-cholesterol-supported steroidogenesis, similar results to those obtained in the adrenal ZF/ACTH system, leading us to propose that PTP action is an obligatory and common step in the cascade triggered by both hormones. Then, we continued the study testing whether LH modulates PTP activity in MA-10 cells, a Leydig cell line. In this regard, we observed by an in-gel PTP assay two PTPs of 110 and 50 kDa that are activated by hormone and 8-bromo-cAMP activation of the cells. Moreover, there is a transient increase by the second messenger in total PTP activity that correlates with the higher activity displayed by the 110 and 50 kDa proteins in the in-gel assay. In accordance with these results, analysis of tyrosine phosphorylated proteins showed the LH-induced dephosphorylation of proteins of 120, 68 and 50 kDa. The results of this study indicate that PTPs play an important role in the regulation of Leydig cell functions and that there exists a cross talk between serine/threonine phosphorylation and tyrosine dephosphorylation mediated by hormone-activated cAMP-dependent protein kinase and PTPs. These results are the first evidence of PTP having a role in LH/CG-stimulated steroidogenesis.

1996 ◽  
Vol 271 (8) ◽  
pp. 4319-4326 ◽  
Author(s):  
Marco Muda ◽  
Ursula Boschert ◽  
Robin Dickinson ◽  
Jean-Claude Martinou ◽  
Isabelle Martinou ◽  
...  

2002 ◽  
Vol 65 (4) ◽  
pp. 1823-1833 ◽  
Author(s):  
Karen J. Martell ◽  
Audrey F. Seasholtz ◽  
Seung P. Kwak ◽  
Kristina K. Clemens ◽  
Jack E. Dixon

2004 ◽  
Vol 380 (3) ◽  
pp. 939-949 ◽  
Author(s):  
Patricia BUKCZYNSKA ◽  
Manuela KLINGLER-HOFFMANN ◽  
Kenneth I. MITCHELHILL ◽  
Mark H. C. LAM ◽  
Melissa CICCOMANCINI ◽  
...  

Two alternatively spliced forms of the human protein tyrosine phosphatase TCPTP (T-cell protein tyrosine phosphatase) exist: a 48 kDa form that is targeted to the endoplasmic reticulum (TC48) and a shorter 45 kDa form that is targeted to the nucleus (TC45). In this study we have identified Ser-304 (Phe301-Asp-His-Ser304-Pro-Asn-Lys307) as a major TCPTP phosphory-lation site and demonstrate that TC45, but not TC48, is phosphorylated on this site in vivo. Phosphorylation of TC45 on Ser-304 was cell cycle-dependent, and increased as cells progressed from G2 into mitosis, but subsided upon mitotic exit. Ser-304 phosphorylation was increased when cells were arrested in mitosis by microtubule poisons such as nocodazole, but remained unaltered when cells were arrested at the G2/M checkpoint by adriamycin. Phosphorylation of Ser-304 did not alter significantly the phosphatase activity or the protein stability of TC45, and had no apparent effect on TC45 localization. Ser-304 phosphorylation was ablated when cells were treated with the CDK (cyclin-dependent protein kinase) inhibitors roscovitine or SU9516, but remained unaltered when ERK1/2 activation was inhibited with the MEK (mitogen-activated protein kinase/extracellular-signal-regulated kinase kinase) inhibitor PD98059. In addition, recombinant CDKs, but not the Polo-like kinase Plk1, phosphorylated Ser-304 in vitro. Our studies identify Ser-304 as a major phosphorylation site in human TCPTP, and the TC45 variant as a novel mitotic CDK substrate.


Sign in / Sign up

Export Citation Format

Share Document