scholarly journals Inflammation and nitric oxide production in skeletal muscle of type 2 diabetic patients

2004 ◽  
Vol 181 (3) ◽  
pp. 419-427 ◽  
Author(s):  
SH Torres ◽  
JB De Sanctis ◽  
L M de Briceno ◽  
N Hernandez ◽  
HJ Finol

An inflammatory process may be involved in nitric oxide production in skeletal muscle of type 2 diabetic patients. Nitric oxide generation in skeletal muscle was assessed in 14 non-complicated type 2 diabetic patients and in 12 healthy subjects. In samples of quadriceps femoris muscle, endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), nitrite, nitrate and nitrotyrosine were determined. The macrophage-specific antigen CD163, the T-cell membrane factor CD154 and tumour necrosis factor-alpha (TNF-alpha) were also assayed. In six patients, ultrastructural analysis of muscle was performed. Nitrites and nitrates were increased in patients as compared to controls (22.7+/-4.5 and 32.7+/-7.0 vs 16.0+/-2.9 and 22.8+/-4.0 micromol/mg protein; P<0.001, Mann-Whitney U test). Endothelial NOS was similar in diabetic and control subjects (36.4+/-13.8 vs 36.3+/-6.8 ng/mg protein), contrasting with the significant increase of iNOS recorded in patients (34.3+/-13.0 vs 8.5+/-2.8 ng/mg protein, P<0.00002). Nitrotyrosine levels were higher in the patient than in the control group (42.1+/-24.4 vs 10.3+/-2.5 ng/mg protein, P<0.00002), as were CD163 (10-fold) and TNF-alpha (fourfold) levels. Furthermore, CD154 levels were detectable only in the patient samples (10.2+/-5.3 ng/mg protein). By multiple-regression analysis, changes in glycated haemoglobin values could predict 96% variation in nitrotyrosine. Macrophages were present in all muscle samples analysed by electromicroscopy. The increased levels of CD163, CD154 and TNF-alpha indicate that an inflammatory process occurs in skeletal muscle of type 2 diabetic patients. This may contribute to iNOS induction, muscle damage and insulin resistance.

Inflammation ◽  
2015 ◽  
Vol 39 (2) ◽  
pp. 632-642 ◽  
Author(s):  
Guendalina Lucarini ◽  
Giacomo Tirabassi ◽  
Antonio Zizzi ◽  
Giancarlo Balercia ◽  
Alexia Quaranta ◽  
...  

2013 ◽  
Vol 231 (3) ◽  
pp. 217-222 ◽  
Author(s):  
Siti Safiah Mokhtar ◽  
Paul M. Vanhoutte ◽  
Susan W.S. Leung ◽  
Mohd Imran Yusof ◽  
Wan Azman Wan Sulaiman ◽  
...  

2016 ◽  
Vol 22 (18) ◽  
pp. 2650-2656 ◽  
Author(s):  
Noelia Diaz-Morales ◽  
Susana Rovira-Llopis ◽  
Irene Escribano-Lopez ◽  
Celia Bañuls ◽  
Sandra Lopez-Domenech ◽  
...  

2021 ◽  
Vol 22 (13) ◽  
pp. 7228
Author(s):  
Ching-Chia Wang ◽  
Huang-Jen Chen ◽  
Ding-Cheng Chan ◽  
Chen-Yuan Chiu ◽  
Shing-Hwa Liu ◽  
...  

Urinary acrolein adduct levels have been reported to be increased in both habitual smokers and type-2 diabetic patients. The impairment of glucose transport in skeletal muscles is a major factor responsible for glucose uptake reduction in type-2 diabetic patients. The effect of acrolein on glucose metabolism in skeletal muscle remains unclear. Here, we investigated whether acrolein affects muscular glucose metabolism in vitro and glucose tolerance in vivo. Exposure of mice to acrolein (2.5 and 5 mg/kg/day) for 4 weeks substantially increased fasting blood glucose and impaired glucose tolerance. The glucose transporter-4 (GLUT4) protein expression was significantly decreased in soleus muscles of acrolein-treated mice. The glucose uptake was significantly decreased in differentiated C2C12 myotubes treated with a non-cytotoxic dose of acrolein (1 μM) for 24 and 72 h. Acrolein (0.5–2 μM) also significantly decreased the GLUT4 expression in myotubes. Acrolein suppressed the phosphorylation of glucose metabolic signals IRS1, Akt, mTOR, p70S6K, and GSK3α/β. Over-expression of constitutive activation of Akt reversed the inhibitory effects of acrolein on GLUT4 protein expression and glucose uptake in myotubes. These results suggest that acrolein at doses relevant to human exposure dysregulates glucose metabolism in skeletal muscle cells and impairs glucose tolerance in mice.


Sign in / Sign up

Export Citation Format

Share Document