scholarly journals Simultaneous changes in central and peripheral components of the hypothalamus-pituitary-thyroid axis in lipopolysaccharide-induced acute illness in mice

2004 ◽  
Vol 182 (2) ◽  
pp. 315-323 ◽  
Author(s):  
A Boelen ◽  
J Kwakkel ◽  
DC Thijssen-Timmer ◽  
A Alkemade ◽  
E Fliers ◽  
...  

During illness, major changes in thyroid hormone metabolism and regulation occur; these are collectively known as non-thyroidal illness and are characterized by decreased serum triiodothyronine (T(3)) and thyroxine (T(4)) without an increase in serum TSH. Whether alterations in the central part of the hypothalamus-pituitary-thyroid (HPT) axis precede changes in peripheral thyroid hormone metabolism instead of vice versa, or occur simultaneously, is presently unknown. We therefore studied the time-course of changes in thyroid hormone metabolism in the HPT axis of mice during acute illness induced by bacterial endotoxin (lipopolysaccharide; LPS).LPS rapidly induced interleukin-1beta mRNA expression in the hypothalamus, pituitary, thyroid and liver. This was followed by almost simultaneous changes in the pituitary (decreased expression of thyroid receptor (TR)-beta2, TSHbeta and 5'-deiodinase (D1) mRNAs), the thyroid (decreased TSH receptor mRNA) and the liver (decreased TRbeta1 and D1 mRNA). In the hypothalamus, type 2 deiodinase mRNA expression was strongly increased whereas preproTRH mRNA expression did not change after LPS. Serum T(3) and T(4) fell only after 24 h.Our results suggested almost simultaneous involvement of the whole HPT axis in the downregulation of thyroid hormone metabolism during acute illness.

2017 ◽  
Author(s):  
Chunyun Zhong ◽  
Kewen Xiong ◽  
Xin Wang

AbstractProgesterone is a natural steroid hormone excreted by animals and humans, which has been frequently detected in the aquatic ecosystems. The effects of the residual progesterone on fish are unclear. In this study, we aimed to examine the effects of progesterone on the hypothalamic-pituitary-thyroid (HPT) axis by detecting the gene transcriptional expression levels. Zebrafish embryos were treated with different concentrations of progesterone from 12 hours post-fertilization (hpf) to 120 hpf. Total mRNA was extracted and the transcriptional profiles of genes involved in HPT axis were examined using qPCR. The genes related to thyroid hormone metabolism and thyroid hormone synthesis were up-regulated in zebrafish exposed to progesterone. These results indicated that progesterone affected the mRNA expression of genes involved in the HPT axis, which might interrupt the endocrine system in zebrafish. Our data also suggested that zebrafish is a useful tool for evaluating the effects of chemicals on the thyroid endocrine system.


2006 ◽  
Vol 190 (2) ◽  
pp. 537-544 ◽  
Author(s):  
A Boelen ◽  
J Kwakkel ◽  
X G Vos ◽  
W M Wiersinga ◽  
E Fliers

Profound changes in thyroid hormone metabolism occur in the central part of the hypothalamus–pituitary–thyroid (HPT) axis during fasting. Hypothalamic changes are partly reversed by leptin administration, which decreases during fasting. It is unknown to what extent leptin affects the HPT axis at the level of the pituitary. We, therefore, studied fasting-induced alterations in pituitary thyroid hormone metabolism, as well as effects of leptin administration on these changes. Because refeeding rapidly increased serum leptin, the same parameters were studied after fasting followed by refeeding. Fasting for 24 h decreased serum T3 and T4 and pituitary TSHβ, type 2deiodinase (D2), and thyroid hormone receptor β2 (TRβ2) mRNA expression. The decrease in D2 and TRβ2 mRNA expression was prevented when 20 μg leptin was administered twice during fasting. By contrast, the decrease in TSHβ mRNA expression was unaffected. A single dose of leptin given after 24 h fasting did not affect decreased TSHβ, D2, and TRβ2 mRNA expression, while 4 h refeeding resulted in pituitary D2 and TRβ2 mRNA expression as observed in control mice. Serum leptin, T3, and T4 after refeeding were similar compared with leptin administration. We conclude that fasting decreases pituitary TSHβ, D2, and TRβ2 mRNA expression, which (with the exception of TSHβ) can be prevented by leptin administration during fasting. Following 24 h fasting, 4 h refeeding completely restores pituitary D2 and TRβ2 mRNA expression, while a single leptin dose is ineffective. This indicates that other postingestion signals may be necessary to modulate rapidly the fasting-induced decrease in pituitary D2 and TRβ2 mRNA expression.


2004 ◽  
pp. 497-502 ◽  
Author(s):  
A Boelen ◽  
J Kwakkel ◽  
M Platvoet-ter Schiphorst ◽  
B Mentrup ◽  
A Baur ◽  
...  

OBJECTIVE: Proinflammatory cytokines are involved in the pathogenesis of non-thyroidal illness (NTI), as shown by studies with IL-6-/- and IL-12-/- mice. Interleukin (IL)-6 changes peripheral thyroid hormone metabolism, and IL-12 seems to be involved in the regulation of the central part of the hypothalamic-pituitary-thyroid (HPT) axis during illness. IL-18 is a proinflammatory cytokine which shares important biological properties with IL-12, such as interferon (IFN)-gamma-inducing activity. DESIGN: By studying the changes in the HPT-axis during bacterial lipopolysaccharide (LPS)-induced illness in IL-18-/-, IFNgammaR-/- and wild-type (WT) mice, we wanted to unravel the putative role of IL-18 and IFNgamma in the pathogenesis of NTI. RESULTS: LPS induced a decrease in pituitary type 1 deiodinase (D1) activity (P<0.05, ANOVA) in WT mice, but not in IL-18-/- mice, while the decrease in D2 activity was similar in both strains. LPS decreased serum thyroid hormone levels and liver D1 mRNA within 24 h similarly in IL-18-/-, and WT mice. The expression of IL-1, IL-6 and IFNgamma mRNA expression was significantly lower in IL-18-/- mice than in WT, while IL-12 mRNA expression was similar. IFNgammaR-/- mice had higher basal D1 activity in the pituitary than WT mice (P<0.05); LPS induced a decrease of D2, but not of D1, activity in the pituitary which was similar in both strains. In the liver, the LPS-induced increase in cytokine expression was not different between IFNgammaR-/- mice and WT mice, and the decrease in serum T3 and T4 levels and hepatic D1 mRNA was also similar. CONCLUSIONS: The relative decrease in serum T3 and T4 and liver D1 mRNA in response to LPS is similar in IL-18-/-, IFNgammaR-/- and WT mice despite significant changes in hepatic cytokine induction. However, the LPS-induced decrease in D1 activity in the pituitary of WT mice is absent in IL-18-/- mice; in contrast, LPS did not decrease pituitary D1 activity in the IFNgammaR-/- mice or their WT, which might be due to the genetic background of the mice. Our results suggest that IL-18 is also involved in the regulation of the central part of the HPT axis during illness.


2006 ◽  
Vol 191 (3) ◽  
pp. 707-714 ◽  
Author(s):  
A Boelen ◽  
J Kwakkel ◽  
W M Wiersinga ◽  
E Fliers

During illness, changes in thyroid hormone metabolism occur, known as nonthyroidal illness and characterised by decreased serum triiodothyronine (T3) and thyroxine (T4) without an increase in TSH. A mouse model of chronic illness is local inflammation, induced by a turpentine injection in each hind limb. Although serum T3 and T4 are markedly decreased in this model, it is unknown whether turpentine administration affects the central part of the hypothalamus–pituitary–thyroid axis (HPT-axis). We therefore studied thyroid hormone metabolism in hypothalamus and pituitary of mice during chronic inflammation induced by turpentine injection. Using pair-fed controls, we could differentiate between the effects of chronic inflammation per se and the effects of restricted food intake as a result of illness. Chronic inflammation increased interleukin (IL)-1β mRNA expression in the hypothalamus more rapidly than in the pituitary. This hypothalamic cytokine response was associated with a rapid increase in local D2 mRNA expression. By contrast, no changes were present in pituitary D2 expression. TSHβ mRNA expression was altered compared with controls. Comparing chronic inflamed mice with pair-fed controls, both preproTSH releasing hormone (TRH) and D3 mRNA expression in the paraventricular nucleus were significantly lower 48 h after turpentine administration. The timecourse of TSHβ mRNA expression was completely different in inflamed mice compared with pair-fed mice. Turpentine administration resulted in significantly decreased TSHβ mRNA expression only after 24 h while later in time it was lower in pair-fed controls. In conclusion, central thyroid hormone metabolism is altered during chronic inflammation and this cannot solely be attributed to diminished food intake.


Endocrinology ◽  
2012 ◽  
Vol 153 (9) ◽  
pp. 4128-4135 ◽  
Author(s):  
Ricardo H. Costa-e-Sousa ◽  
Anthony N. Hollenberg

Thyroid hormone (TH) signaling plays an important role in development and adult life. Many organisms may have evolved under selective pressure of exogenous TH, suggesting that thyroid hormone signaling is phylogenetically older than the systems that regulate their synthesis. Therefore, the negative feedback system by TH itself was probably the first mechanism of regulation of circulating TH levels. In humans and other vertebrates, it is well known that TH negatively regulates its own production through central actions that modulate the hypothalamic-pituitary-thyroid (HPT) axis. Indeed, primary hypothyroidism leads to the up-regulation of the genes encoding many key players in the HPT axis, such as TRH, type 2 deiodinase (dio2), pyroglutamyl peptidase II (PPII), TRH receptor 1 (TRHR1), and the TSH α- and β-subunits. However, in many physiological circumstances, the activity of the HPT axis is not always a function of circulating TH concentrations. Indeed, circadian changes in the HPT axis activity are not a consequence of oscillation in circulating TH levels. Similarly, during reduced food availability, several components of the HPT axis are down-regulated even in the presence of lower circulating TH levels, suggesting the presence of a regulatory pathway hierarchically higher than the feedback system. This minireview discusses the neural regulation of the HPT axis, focusing on both TH-dependent and -independent pathways and their potential integration.


Endocrinology ◽  
2002 ◽  
Vol 143 (12) ◽  
pp. 4513-4519 ◽  
Author(s):  
Csaba Fekete ◽  
Sumit Sarkar ◽  
William M. Rand ◽  
John W. Harney ◽  
Charles H. Emerson ◽  
...  

Abstract Neuropeptide Y (NPY) is one of the most important hypothalamic-derived neuropeptides mediating the effects of leptin on energy homeostasis. Central administration of NPY not only markedly stimulates food intake, but simultaneously inhibits the hypothalamic-pituitary-thyroid axis (HPT axis), replicating the central hypothyroid state associated with fasting. To identify the specific NPY receptor subtypes involved in the action of NPY on the HPT axis, we studied the effects of the highly selective Y1 ([Phe7,Pro34]pNPY) and Y5 ([chicken pancreatic polypeptide1–7, NPY19–23, Ala31, Aib32 (aminoisobutyric acid), Q34]human pancreatic polypeptide) receptor agonists on circulating thyroid hormone levels and proTRH mRNA in hypophysiotropic neurons of the hypothalamic paraventricular nucleus. The peptides were administered continuously by osmotic minipump into the cerebrospinal fluid (CSF) over 3 d in ad libitum-fed animals and animals pair-fed to artificial CSF (aCSF)-infused controls. Both Y1 and Y5 receptor agonists nearly doubled food intake compared with that of control animals receiving aCSF, similar to the effect observed for NPY. NPY, Y1, and Y5 receptor agonist administration suppressed circulating levels of thyroid hormones (T3 and T4) and resulted in inappropriately normal or low TSH levels. These alterations were also associated with significant suppression of proTRH mRNA in the paraventricular nucleus, particularly in the Y1 receptor agonist-infused group [aCSF, NPY, Y1, and Y5 (density units ± sem), 97.2 ± 8.6, 39.6 ± 8.4, 19.9 ± 1.9, and 44.6 ± 8.4]. No significant differences in thyroid hormone levels, TSH, or proTRH mRNA were observed between the agonist-infused FSanimals eating ad libitum and the agonist-infused animals pair-fed with vehicle-treated controls. These data confirm the importance of both Y1 and Y5 receptors in the NPY-mediated increase in food consumption and demonstrate that both Y1 and Y5 receptors can mediate the inhibitory effects of NPY on the HPT axis.


Endocrinology ◽  
2010 ◽  
Vol 151 (4) ◽  
pp. 1959-1969 ◽  
Author(s):  
Joan Kwakkel ◽  
Olivier Chassande ◽  
Hermina C. van Beeren ◽  
Eric Fliers ◽  
Wilmar M. Wiersinga ◽  
...  

Acute inflammation is characterized by low serum T3 and T4 levels accompanied by changes in liver type 1 deiodinase (D1), liver D3, muscle D2, and muscle D3 expression. It is unknown at present whether thyroid hormone receptor α (TRα) plays a role in altered peripheral thyroid hormone metabolism during acute illness in vivo. We induced acute illness in TRα-deficient (TRα0/0) mice by administration of a sublethal dose of LPS. Compared with wild-type, TRα0/0 mice have lower basal serum T4 and lower liver D1 activity and muscle D3 mRNA expression, whereas liver D3 activity is higher. These changes are gender specific. The inflammatory response to LPS was similar in WT and TRα0/0 mice. The decrease in serum thyroid hormones and liver D1 was attenuated in TRα0/0 mice, whereas the LPS induced fall in liver D3 mRNA was more pronounced in TRα0/0 mice. Muscle D2 mRNA increased similarly in both strains, whereas muscle D3 mRNA decreased less pronounced in TRα0/0 mice. We conclude that alterations in peripheral thyroid hormone metabolism induced by LPS administration are partly regulated via TRα.


Sign in / Sign up

Export Citation Format

Share Document