scholarly journals Minireview: The Neural Regulation of the Hypothalamic-Pituitary-Thyroid Axis

Endocrinology ◽  
2012 ◽  
Vol 153 (9) ◽  
pp. 4128-4135 ◽  
Author(s):  
Ricardo H. Costa-e-Sousa ◽  
Anthony N. Hollenberg

Thyroid hormone (TH) signaling plays an important role in development and adult life. Many organisms may have evolved under selective pressure of exogenous TH, suggesting that thyroid hormone signaling is phylogenetically older than the systems that regulate their synthesis. Therefore, the negative feedback system by TH itself was probably the first mechanism of regulation of circulating TH levels. In humans and other vertebrates, it is well known that TH negatively regulates its own production through central actions that modulate the hypothalamic-pituitary-thyroid (HPT) axis. Indeed, primary hypothyroidism leads to the up-regulation of the genes encoding many key players in the HPT axis, such as TRH, type 2 deiodinase (dio2), pyroglutamyl peptidase II (PPII), TRH receptor 1 (TRHR1), and the TSH α- and β-subunits. However, in many physiological circumstances, the activity of the HPT axis is not always a function of circulating TH concentrations. Indeed, circadian changes in the HPT axis activity are not a consequence of oscillation in circulating TH levels. Similarly, during reduced food availability, several components of the HPT axis are down-regulated even in the presence of lower circulating TH levels, suggesting the presence of a regulatory pathway hierarchically higher than the feedback system. This minireview discusses the neural regulation of the HPT axis, focusing on both TH-dependent and -independent pathways and their potential integration.

2004 ◽  
Vol 182 (2) ◽  
pp. 315-323 ◽  
Author(s):  
A Boelen ◽  
J Kwakkel ◽  
DC Thijssen-Timmer ◽  
A Alkemade ◽  
E Fliers ◽  
...  

During illness, major changes in thyroid hormone metabolism and regulation occur; these are collectively known as non-thyroidal illness and are characterized by decreased serum triiodothyronine (T(3)) and thyroxine (T(4)) without an increase in serum TSH. Whether alterations in the central part of the hypothalamus-pituitary-thyroid (HPT) axis precede changes in peripheral thyroid hormone metabolism instead of vice versa, or occur simultaneously, is presently unknown. We therefore studied the time-course of changes in thyroid hormone metabolism in the HPT axis of mice during acute illness induced by bacterial endotoxin (lipopolysaccharide; LPS).LPS rapidly induced interleukin-1beta mRNA expression in the hypothalamus, pituitary, thyroid and liver. This was followed by almost simultaneous changes in the pituitary (decreased expression of thyroid receptor (TR)-beta2, TSHbeta and 5'-deiodinase (D1) mRNAs), the thyroid (decreased TSH receptor mRNA) and the liver (decreased TRbeta1 and D1 mRNA). In the hypothalamus, type 2 deiodinase mRNA expression was strongly increased whereas preproTRH mRNA expression did not change after LPS. Serum T(3) and T(4) fell only after 24 h.Our results suggested almost simultaneous involvement of the whole HPT axis in the downregulation of thyroid hormone metabolism during acute illness.


Endocrinology ◽  
2002 ◽  
Vol 143 (12) ◽  
pp. 4513-4519 ◽  
Author(s):  
Csaba Fekete ◽  
Sumit Sarkar ◽  
William M. Rand ◽  
John W. Harney ◽  
Charles H. Emerson ◽  
...  

Abstract Neuropeptide Y (NPY) is one of the most important hypothalamic-derived neuropeptides mediating the effects of leptin on energy homeostasis. Central administration of NPY not only markedly stimulates food intake, but simultaneously inhibits the hypothalamic-pituitary-thyroid axis (HPT axis), replicating the central hypothyroid state associated with fasting. To identify the specific NPY receptor subtypes involved in the action of NPY on the HPT axis, we studied the effects of the highly selective Y1 ([Phe7,Pro34]pNPY) and Y5 ([chicken pancreatic polypeptide1–7, NPY19–23, Ala31, Aib32 (aminoisobutyric acid), Q34]human pancreatic polypeptide) receptor agonists on circulating thyroid hormone levels and proTRH mRNA in hypophysiotropic neurons of the hypothalamic paraventricular nucleus. The peptides were administered continuously by osmotic minipump into the cerebrospinal fluid (CSF) over 3 d in ad libitum-fed animals and animals pair-fed to artificial CSF (aCSF)-infused controls. Both Y1 and Y5 receptor agonists nearly doubled food intake compared with that of control animals receiving aCSF, similar to the effect observed for NPY. NPY, Y1, and Y5 receptor agonist administration suppressed circulating levels of thyroid hormones (T3 and T4) and resulted in inappropriately normal or low TSH levels. These alterations were also associated with significant suppression of proTRH mRNA in the paraventricular nucleus, particularly in the Y1 receptor agonist-infused group [aCSF, NPY, Y1, and Y5 (density units ± sem), 97.2 ± 8.6, 39.6 ± 8.4, 19.9 ± 1.9, and 44.6 ± 8.4]. No significant differences in thyroid hormone levels, TSH, or proTRH mRNA were observed between the agonist-infused FSanimals eating ad libitum and the agonist-infused animals pair-fed with vehicle-treated controls. These data confirm the importance of both Y1 and Y5 receptors in the NPY-mediated increase in food consumption and demonstrate that both Y1 and Y5 receptors can mediate the inhibitory effects of NPY on the HPT axis.


2017 ◽  
Author(s):  
Chunyun Zhong ◽  
Kewen Xiong ◽  
Xin Wang

AbstractProgesterone is a natural steroid hormone excreted by animals and humans, which has been frequently detected in the aquatic ecosystems. The effects of the residual progesterone on fish are unclear. In this study, we aimed to examine the effects of progesterone on the hypothalamic-pituitary-thyroid (HPT) axis by detecting the gene transcriptional expression levels. Zebrafish embryos were treated with different concentrations of progesterone from 12 hours post-fertilization (hpf) to 120 hpf. Total mRNA was extracted and the transcriptional profiles of genes involved in HPT axis were examined using qPCR. The genes related to thyroid hormone metabolism and thyroid hormone synthesis were up-regulated in zebrafish exposed to progesterone. These results indicated that progesterone affected the mRNA expression of genes involved in the HPT axis, which might interrupt the endocrine system in zebrafish. Our data also suggested that zebrafish is a useful tool for evaluating the effects of chemicals on the thyroid endocrine system.


2014 ◽  
Vol 171 (5) ◽  
pp. R197-R208 ◽  
Author(s):  
Eric Fliers ◽  
Andries Kalsbeek ◽  
Anita Boelen

The hypothalamus–pituitary–thyroid (HPT) axis represents a classical example of an endocrine feedback loop. This review discusses dynamic changes in HPT axis setpoint regulation, identifying their molecular and cellular determinants, and speculates about their functional role. Hypothalamic thyrotropin-releasing hormone neurons were identified as key components of thyroid hormone (TH) setpoint regulation already in the 1980s, and this was followed by the demonstration of a pivotal role for the thyroid hormone receptor beta in negative feedback of TH on the hypothalamic and pituitary level. Gradually, the concept emerged of the HPT axis setpoint as a fixed entity, aiming at a particular TH serum concentration. However, TH serum concentrations appear to be variable and highly responsive to physiological and pathophysiological environmental factors, including the availability or absence of food, inflammation and clock time. During food deprivation and inflammation, TH serum concentrations decrease without a concomitant rise in serum TSH, reflecting a deviation from negative feedback regulation in the HPT axis. Surprisingly, TH action in peripheral organs in these conditions cannot be simply predicted by decreased serum TH concentrations. Instead, diverse environmental stimuli have differential effects on local TH metabolism, e.g. in liver and muscle, occurring quite independently from decreased TH serum concentrations. The net effect of these differential local changes is probably a major determinant of TH action at the tissue level. In sum, hypothalamic HPT axis setpoint regulation as well as TH metabolism at the peripheral organ level is flexible and dynamic, and may adapt the organism in an optimal way to a range of environmental challenges.


2015 ◽  
Vol 226 (2) ◽  
pp. T85-T100 ◽  
Author(s):  
Patricia Joseph-Bravo ◽  
Lorraine Jaimes-Hoy ◽  
Rosa-María Uribe ◽  
Jean-Louis Charli

This review presents the findings that led to the discovery of TRH and the understanding of the central mechanisms that control hypothalamus–pituitary–thyroid axis (HPT) activity. The earliest studies on thyroid physiology are now dated a century ago when basal metabolic rate was associated with thyroid status. It took over 50 years to identify the key elements involved in the HPT axis. Thyroid hormones (TH: T4and T3) were characterized first, followed by the semi-purification of TSH whose later characterization paralleled that of TRH. Studies on the effects of TH became possible with the availability of synthetic hormones. DNA recombinant techniques permitted the identification of all the elements involved in the HPT axis, including their mode of regulation. Hypophysiotropic TRH neurons, which control the pituitary–thyroid axis, were identified among other hypothalamic neurons which express TRH. Three different deiodinases were recognized in various tissues, as well as their involvement in cell-specific modulation of T3concentration. The role of tanycytes in setting TRH levels due to the activity of deiodinase type 2 and the TRH-degrading ectoenzyme was unraveled. TH-feedback effects occur at different levels, including TRH and TSH synthesis and release, deiodinase activity, pituitary TRH-receptor and TRH degradation. The activity of TRH neurons is regulated by nutritional status through neurons of the arcuate nucleus, which sense metabolic signals such as circulating leptin levels.Trhexpression and the HPT axis are activated by energy demanding situations, such as cold and exercise, whereas it is inhibited by negative energy balance situations such as fasting, inflammation or chronic stress. New approaches are being used to understand the activity of TRHergic neurons within metabolic circuits.


2004 ◽  
pp. 497-502 ◽  
Author(s):  
A Boelen ◽  
J Kwakkel ◽  
M Platvoet-ter Schiphorst ◽  
B Mentrup ◽  
A Baur ◽  
...  

OBJECTIVE: Proinflammatory cytokines are involved in the pathogenesis of non-thyroidal illness (NTI), as shown by studies with IL-6-/- and IL-12-/- mice. Interleukin (IL)-6 changes peripheral thyroid hormone metabolism, and IL-12 seems to be involved in the regulation of the central part of the hypothalamic-pituitary-thyroid (HPT) axis during illness. IL-18 is a proinflammatory cytokine which shares important biological properties with IL-12, such as interferon (IFN)-gamma-inducing activity. DESIGN: By studying the changes in the HPT-axis during bacterial lipopolysaccharide (LPS)-induced illness in IL-18-/-, IFNgammaR-/- and wild-type (WT) mice, we wanted to unravel the putative role of IL-18 and IFNgamma in the pathogenesis of NTI. RESULTS: LPS induced a decrease in pituitary type 1 deiodinase (D1) activity (P<0.05, ANOVA) in WT mice, but not in IL-18-/- mice, while the decrease in D2 activity was similar in both strains. LPS decreased serum thyroid hormone levels and liver D1 mRNA within 24 h similarly in IL-18-/-, and WT mice. The expression of IL-1, IL-6 and IFNgamma mRNA expression was significantly lower in IL-18-/- mice than in WT, while IL-12 mRNA expression was similar. IFNgammaR-/- mice had higher basal D1 activity in the pituitary than WT mice (P<0.05); LPS induced a decrease of D2, but not of D1, activity in the pituitary which was similar in both strains. In the liver, the LPS-induced increase in cytokine expression was not different between IFNgammaR-/- mice and WT mice, and the decrease in serum T3 and T4 levels and hepatic D1 mRNA was also similar. CONCLUSIONS: The relative decrease in serum T3 and T4 and liver D1 mRNA in response to LPS is similar in IL-18-/-, IFNgammaR-/- and WT mice despite significant changes in hepatic cytokine induction. However, the LPS-induced decrease in D1 activity in the pituitary of WT mice is absent in IL-18-/- mice; in contrast, LPS did not decrease pituitary D1 activity in the IFNgammaR-/- mice or their WT, which might be due to the genetic background of the mice. Our results suggest that IL-18 is also involved in the regulation of the central part of the HPT axis during illness.


2007 ◽  
Vol 77 (3) ◽  
pp. 236-240 ◽  
Author(s):  
Zimmermann

Vitamin A (VA) deficiency (VAD) and the iodine deficiency disorders (IDD) affect > 30% of the global population and these deficiencies often coexist in vulnerable groups. VAD has multiple effects on the pituitary-thyroid axis; VA status modulates thyroid gland metabolism, peripheral metabolism of thyroid hormone, and production of thyrotropin (TSH) by the pituitary. Findings from Africa children indicate that VAD in severely-IDD-affected children increases TSH stimulation and thyroid size, and reduces risk for hypothyroidism. In children with VAD, the higher TSH concentrations in the face of higher circulating total thyroxine suggest central resistance to normal TSH suppression by thyroid hormone. In IDD- and VAD-affected children receiving iodized salt, concurrent VA supplementation improves iodine efficacy. Recent VA and iodine depletion studies in rats indicate moderate VAD alone has no measurable effect on the pituitary-thyroid axis; however, concurrent iodine deficiency (ID) and VAD produce more severe primary hypothyroidism than ID alone. Repletion studies in VA- and iodine-deficient animals suggest: 1) primary hypothyroidism in animals with concurrent moderate VAD and ID does not reduce the efficacy of high doses of oral VA; 2) VAD does not reduce the efficacy of dietary iodine to correct pituitary-thyroid axis dysfunction due to iodine deficiency; and 3) given alone, without iodine repletion, high-dose VA supplementation in combined VAD and ID may reduce thyroid hyperstimulation and reduce risk for goiter.


2019 ◽  
Vol 128 (06/07) ◽  
pp. 388-394
Author(s):  
Helge Müller-Fielitz ◽  
Markus Schwaninger

AbstractThyroid hormone (TH) regulation is important for development, energy homeostasis, heart function, and bone formation. To control the effects of TH in target organs, the hypothalamus-pituitary-thyroid (HPT) axis and the tissue-specific availability of TH are highly regulated by negative feedback. To exert a central feedback, TH must enter the brain via specific transport mechanisms and cross the blood-brain barrier. Here, tanycytes, which are located in the ventral walls of the 3rd ventricle in the mediobasal hypothalamus (MBH), function as gatekeepers. Tanycytes are able to transport, sense, and modify the release of hormones of the HPT axis and are involved in feedback regulation. In this review, we focus on the relevance of tanycytes in thyrotropin-releasing hormone (TRH) release and review available genetic tools to investigate the physiological functions of these cells.


2010 ◽  
Vol 31 (1) ◽  
pp. 136-136
Author(s):  
Michelle L. Sugrue ◽  
Kristen R. Vella ◽  
Crystal Morales ◽  
Marisol E. Lopez ◽  
Anthony N. Hollenberg

ABSTRACT The expression of the TRH gene in the paraventricular nucleus (PVH) of the hypothalamus is required for the normal production of thyroid hormone (TH) in rodents and humans. In addition, the regulation of TRH mRNA expression by TH, specifically in the PVH, ensures tight control of the set point of the hypothalamic-pituitary-thyroid axis. Although many studies have assumed that the regulation of TRH expression by TH is at the level of transcription, there is little data available to demonstrate this. We used two in vivo model systems to show this. In the first model system, we developed an in situ hybridization (ISH) assay directed against TRH heteronuclear RNA to measure TRH transcription directly in vivo. We show that in the euthyroid state, TRH transcription is present both in the PVH and anterior/lateral hypothalamus. In the hypothyroid state, transcription is activated in the PVH only and can be shut off within 5 h by TH. In the second model system, we employed transgenic mice that express the Cre recombinase under the control of the genomic region containing the TRH gene. Remarkably, TH regulates Cre expression in these mice in the PVH only. Taken together, these data affirm that TH regulates TRH at the level of transcription in the PVH only and that genomic elements surrounding the TRH gene mediate its regulation by T3. Thus, it should be possible to identify the elements within the TRH locus that mediate its regulation by T3 using in vivo approaches.


Neuroreport ◽  
1998 ◽  
Vol 9 (13) ◽  
pp. 2933-2937 ◽  
Author(s):  
Angel Campos Barros ◽  
Lawrence C. Erway ◽  
Wojciech Krezel ◽  
Tom Curran ◽  
Philippe Kastner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document