scholarly journals Effects of nanosilica on the calcium silicate hydrates in Portland cement–fly ash systems

2015 ◽  
Vol 27 (4) ◽  
pp. 187-200 ◽  
Author(s):  
Juliana Calabria-Holley ◽  
Kevin Paine ◽  
Styliani Papatzani
2021 ◽  
Vol 288 ◽  
pp. 123142
Author(s):  
Natsumi Noguchi ◽  
Krishnya Siventhirarajah ◽  
Takashi Chabayashi ◽  
Hiroyoshi Kato ◽  
Toyoharu Nawa ◽  
...  

2010 ◽  
Vol 69 ◽  
pp. 92-96 ◽  
Author(s):  
Sotya Astutiningsih ◽  
Dwi Marta Nurjaya ◽  
Henki Wibowo Ashadi ◽  
Niken Swastika

Geopolymer concrete with designed strength of 40 Mpa has been mixed from coarse aggregates, sands and geopolymer pastes. Two kinds of pastes are synthesized from different precursors, i.e. fly ash and dehydroxylated kaolin, using sodium silicate solution as the activator. Compression test pieces of 15x15x15 cm3 of both geopolymer and ordinary Portland cement (OPC) concretes (ASTM C39) have been cast and cured. Curing was done at room temperature for 1 day while Portland cement concretes were immersed in water for 28 days to provide complete hydration. After curing, the samples were immersed in ASTM seawater (ASTM D1141-90) for 7, 28, 56 and 90 days. It is found that geopolymer concretes were in general more durable upon seawater immersion than OPC concrete, This is indicated by the compressive strength retained after immersion. Dehydroxylated kaolin geopolymers show the best performance whose strength did not decrease with time of immersion. The strength of fly ash geopolymers decreased by about 20% during 56-day immersion but did not decrease further. Calcium content is suspected to cause the decrease in strength upon immersion. Kaolin geopolymers containing no calcium showed the best performance, while OPC which consist mostly of calcium silicate hydrates as the strength contributor, showed consistent decrease in strength. It is also found from the experiment that room temperature curing of fly ash geopolymer was slow but continued to progress until 28 days both under dry condition (not immersed) and immersed in water.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1450
Author(s):  
Natt Makul

The single most important structural material, and the major Portland cement binding phase in application globally, is calcium silicate hydrate (C-S-H). The concentration has increasingly changed due to its atomic level comprehension because of the chemistry and complex structures of internal C-S-H cohesion in cement crystals at different lengths. This perspective aimed at describing on calcium-silicate-hydrates (C-S-H) structures with differing contents of Ca/Si ratio based on the report entitled “Quantum mechanical metric for internal cohesion in cement crystals” published by C. C. Dharmawardhana, A. Misra and Wai-Yim Ching. Crystal structural and bond behaviors in synthesized C-S-H were also discussed. The investigator studied large subset electronic structures and bonding of the common C-S-H minerals. From each bonding type, the results and findings show a wide variety of contributions, particularly hydrogen bonding, that allow critical analyses of spectroscopic measurement and constructions of practical C-S-H models. The investigator found that the perfect overall measurement for examining crystal cohesions of the complex substances is the total bond density (TBOD), which needs to be substituted for traditional metrics such as calcium to silicon ratios. In comparison to Tobermorite and Jennite, hardly known orthorhombic phased Suolunites were revealed to have greater cohesion and total order distribution density than those of the hydrated Portland cement backbone. The findings of the perspective showed that utilizing quantum mechanical metrics, the total bond orders and total bond order distributions are the most vital criteria for assessing the crystalline cohesions in C-S-H crystals. These metrics encompass effects of both interatomic interactions and geometric elements. Thus, the total bond order distribution and bond order offer comprehensive and in-depth measures for the overall behaviors of these diverse groups of substances. The total bond order distributions must clearly be substituted for the conventional and longstanding Ca/Si ratios applied in categorizing the cement substances. The inconspicuous Suolunite crystals were found to have the greatest total bond order distributions and the perfect bonding characteristics, compositions, and structures for cement hydrates.


2018 ◽  
Vol 17 (9) ◽  
pp. 2023-2030
Author(s):  
Arnon Chaipanich ◽  
Chalermphan Narattha ◽  
Watcharapong Wongkeo ◽  
Pailyn Thongsanitgarn

Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 1015 ◽  
Author(s):  
Emy Aizat Azimi ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Petrica Vizureanu ◽  
Mohd Arif Anuar Mohd Salleh ◽  
Andrei Victor Sandu ◽  
...  

A geopolymer has been reckoned as a rising technology with huge potential for application across the globe. Dolomite refers to a material that can be used raw in producing geopolymers. Nevertheless, dolomite has slow strength development due to its low reactivity as a geopolymer. In this study, dolomite/fly ash (DFA) geopolymer composites were produced with dolomite, fly ash, sodium hydroxide, and liquid sodium silicate. A compression test was carried out on DFA geopolymers to determine the strength of the composite, while a synchrotron Micro-Xray Fluorescence (Micro-XRF) test was performed to assess the elemental distribution in the geopolymer composite. The temperature applied in this study generated promising properties of DFA geopolymers, especially in strength, which displayed increments up to 74.48 MPa as the optimum value. Heat seemed to enhance the strength development of DFA geopolymer composites. The elemental distribution analysis revealed exceptional outcomes for the composites, particularly exposure up to 400 °C, which signified the homogeneity of the DFA composites. Temperatures exceeding 400 °C accelerated the strength development, thus increasing the strength of the DFA composites. This appears to be unique because the strength of ordinary Portland Cement (OPC) and other geopolymers composed of other raw materials is typically either maintained or decreases due to increased heat.


2008 ◽  
Vol 38 (6) ◽  
pp. 832-840 ◽  
Author(s):  
David G. Snelson ◽  
Stan Wild ◽  
Martin O'Farrell

2012 ◽  
Vol 29 ◽  
pp. 33-41 ◽  
Author(s):  
Vili Lilkov ◽  
Ognyan Petrov ◽  
Yana Tzvetanova ◽  
Plamen Savov

Langmuir ◽  
2015 ◽  
Vol 31 (13) ◽  
pp. 3779-3783 ◽  
Author(s):  
Julio C. da Silva ◽  
Pavel Trtik ◽  
Ana Diaz ◽  
Mirko Holler ◽  
Manuel Guizar-Sicairos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document