Measurement of porosity as a predictor of the durability performance of concrete with and without condensed silica fume

2001 ◽  
Vol 13 (4) ◽  
pp. 165-174 ◽  
Author(s):  
P. A. Claisse ◽  
J. G. Cabrera ◽  
D. N. Hunt
Author(s):  
Elena Valentina Stoian ◽  
Dan Nicolae Ungureanu ◽  
Florin Toma ◽  
Alexandru Gabriel Colţa ◽  
Daniel Anculescu ◽  
...  

AbstractThe paper shows data related to coexistence of various binding systems, which could be present during the hardening of special concretes. It is taken into account the Ultra Low Aluminous Cement Concretes additivated with different materials (phosphates and mineral ultra dispersed powders - Condensed Silica Fume, Hydrated Alumina etc). In correlation to the pH-value, these substances can favour the forming of new binding systems besides the hydraulic binder (which is not important in this case). The new system is the coagulation binding form. The coagulation binding system has a very important role in the advanced compactness and in the increasing mechanical strengths of concrete structures.


2019 ◽  
Vol 164 (0) ◽  
pp. 193-213
Author(s):  
Taha E. Taha ◽  
Ahmed M. Tahwia ◽  
Ahmed H. Abdelraheem

2018 ◽  
Vol 761 ◽  
pp. 120-123 ◽  
Author(s):  
Vlastimil Bílek ◽  
David Pytlík ◽  
Marketa Bambuchova

Use a ternary binder for production of a high performance concrete with a compressive strengths between 120 and 170 MPa is presented. The water to binder ratio of the concrete is 0.225 and the binder is composed of Ordinary Portland Cement (OPC), condensed silica fume (CSF), ground limestone (L), fly ash (FA) and metakaoline (MK). The dosage of (M + CSF) is kept at a constant level for a better workability of fresh concrete. Different workability, flexural and compressive strengths were obtained for concretes with a constant cement and a metakaoline dosage, and for a constant dosage (FA + L) but a different ratio FA / L. An optimum composition was found and concretes for other tests were designed using this composition.


1984 ◽  
Vol 14 (5) ◽  
pp. 693-704 ◽  
Author(s):  
M. Buil ◽  
A.M. Paillère ◽  
B. Roussel

1984 ◽  
Vol 42 ◽  
Author(s):  
Farrokh F. Radjy ◽  
Kjell E. Loeland

AbstractWith the advent of microsilica concrete, a new generation of high to ultra high strength and high durability concretes have become commercially feasible and are now being specified and used internationally. Microsilica concrete is produced by incorporating microsilica (beneficiated condensed silica fume) additives in conventional concrete mixes, using conventional materials and equipment. Flowing microsilica concretes with strengths as high as 17000 psi have become field realizable, also benefiting by durability improvements expressible by factors, not percents.Properties of microsilica concrete are reviewed, and property improvements qualitatively linked to a much refined micropore structure of the binder phase.Some recent and rapidly developing field and laboratory experience both in the U.S. and overseas are presented.


Sign in / Sign up

Export Citation Format

Share Document