ON THE CROSS FLOW RESPONSE OF CYLINDRICAL STRUCTURES.

1984 ◽  
Vol 77 (1) ◽  
pp. 99-101
Author(s):  
AR BOKAIAN ◽  
F GEOOLA ◽  
ED OBAJAJU
Author(s):  
Martin So̸reide

As offshore installations are moving into deeper water, engineers have to face new challenges in design of structures. Risers and free-span pipelines, subjected to heavy wave loads and large current velocities, are important components of these installations. Vortex induced vibrations (VIV) is a well known subject for most offshore engineers. VIV can cause large stresses and fatigue damage of slender marine structures. Hence, large safety factors are applied to the fatigue limit state design criterion (FLS), due to uncertainties regarding VIV. The present paper describes the preliminary investigation into the coupling between in-line and cross-flow VIV response. Most experimental data so far has been concentrated on predicting the cross-flow response. However, in-line displacements can make a valuable contribution. In fact, it has been proved that in-line responses may decrease the cross-flow response significantly when allowing the pipe to oscillate in both directions. The paper is based on a master of science thesis at the Norwegian University of Science and Technology (NTNU).


Author(s):  
Elizabeth Passano ◽  
Carl M. Larsen ◽  
Halvor Lie

The purpose of the present paper is to compare vortex-induced vibrations (VIV) in both in-line and cross-flow directions calculated by a semi-empirical computer program to experimental data. The experiments used are the Bearman and Chaplin experiments in which a model of a tensioned riser is partly exposed to current and partly in still water. The VIVANA program is a semi-empirical frequency domain program based on the finite element method. The program was developed by MARINTEK and the Norwegian University of Science and Technology (NTNU) to predict cross-flow response due to VIV. The fluid-structure interaction in VIVANA is described using added mass, excitation and damping coefficients. Later, curves for excitation, added mass and damping for pure in-line VIV response were added. These curves are valid for low current levels, before the onset of cross-flow VIV response. Recently, calculation of response from simultaneous cross-flow and in-line excitation has been included in VIVANA. The in-line response frequency is fixed at twice the cross-flow response frequency and the in-line added mass is adjusted so that this frequency becomes an eigenfrequency. A set of curves based on forces measured during combined cross-flow and inline motions are used. At present, the in-line excitation curves are not dependent on the cross-flow response amplitude. In the paper, in-line and cross-flow response predicted by VIVANA will be compared to the Bearman and Chaplin model tests. The choice of added mass and excitation coefficients will be discussed.


2019 ◽  
Vol 881 ◽  
pp. 815-858 ◽  
Author(s):  
Dixia Fan ◽  
Zhicheng Wang ◽  
Michael S. Triantafyllou ◽  
George Em Karniadakis

Flexible structures placed within an oncoming flow exhibit far more complex vortex-induced dynamics than flexibly mounted rigid cylinders, because they involve the distributed interaction between the structural and wake dynamics along the entire span. Hence, mapping the well-understood properties of rigid cylinder vibrations to those of strings and beams has been elusive. We show here with a combination of experiments, conducted at Reynolds number, $Re$ from 250 to 2300, and computational fluid dynamics that such a mapping is possible for flexible structures in uniform flow undergoing combined cross-flow and in-line oscillations, but only when additional concepts are introduced to model the extended coupling of the flow and the structure. The in-line response consists of largely standing waves that define cells, each cell spanning the distance between adjacent nodes, over which stable vortical patterns form, whose features (‘2S’ versus ‘P$+$S’) depend strongly on the true reduced velocity, $V_{r}=U/f_{y}d$, where $U$ is the inflow velocity, $f_{y}$ is the cross-flow vibration frequency and $d$ is the cylinder diameter, and the phase angle between in-line and cross-flow response; while the cross-flow response may contain travelling waves, breaking the symmetry of the problem. The axial distribution of the highly variable effective added masses in the cross-flow and in-line directions, and the local phase angle between in-line and cross-flow motion determine the single frequency of cross-flow response, while the in-line response vibrates at twice the cross-flow frequency. The cross-flow and in-line lift coefficients in phase with velocity depend strongly on the true reduced velocity but also on the local phase angle between in-line and cross-flow motions. Modal shapes can be defined for in-line and cross-flow, based on the resemblance of the response to conventional modes, which can be in the ratio of either ‘$2n/n$’ or ‘$(2n-1)/n$’, where $n$ is the order of the cross-flow response mode. We use an underwater optical tracking system to reconstruct the sectional fluid forces in a flexible structure and show that, once the cross-flow and in-line motion features are known, employing strip theory and the hydrodynamic coefficients obtained from forced rigid cylinder experiments allows us to predict the distributed forces accurately.


2001 ◽  
Vol 1 (5-6) ◽  
pp. 39-47
Author(s):  
Y. Matsui ◽  
A. Yuasa ◽  
F. Colas

The effects of operational modes on the removal of a synthetic organic chemical (SOC) in natural water by powdered activated carbon (PAC) during ultrafiltration (UF) were studied, through model simulations and experiments. The removal percentage of the trace SOC was independent of its influent concentration for a given PAC dose. The minimum PAC dosage required to achieve a desired effluent concentration could quickly be optimized from the C/C0 plot as a function of the PAC dosage. The cross-flow operation was not advantageous over the dead-end regarding the SOC removal. Added PAC was re-circulated as a suspension in the UF loop for only a short time even under the cross-flow velocity of gt; 1.0 m/s. The cross-flow condition did not contribute much to the suspending of PAC. The pulse PAC addition at the beginning of a filtration cycle resulted in somewhat better SOC removal than the continuous PAC addition. The increased NOM loading on PAC which was dosed in a pulse and stayed longer in the UF loop could possibly further decrease the adsorption rate.


2021 ◽  
pp. 1-17
Author(s):  
K. Xiao ◽  
J. He ◽  
Z. Feng

ABSTRACT This paper proposes an alternating elliptical impingement chamber in the leading edge of a gas turbine to restrain the cross flow and enhance the heat transfer, and investigates the detailed flow and heat transfer characteristics. The chamber consists of straight sections and transition sections. Numerical simulations are performed by solving the three-dimensional (3D) steady Reynolds-Averaged Navier–Stokes (RANS) equations with the Shear Stress Transport (SST) k– $\omega$ turbulence model. The influences of alternating the cross section on the impingement flow and heat transfer of the chamber are studied by comparison with a smooth semi-elliptical impingement chamber at a cross-flow Velocity Ratio (VR) of 0.2 and Temperature Ratio (TR) of 1.00 in the primary study. Then, the effects of the cross-flow VR and TR are further investigated. The results reveal that, in the semi-elliptical impingement chamber, the impingement jet is deflected by the cross flow and the heat transfer performance is degraded. However, in the alternating elliptical chamber, the cross flow is transformed to a pair of longitudinal vortices, and the flow direction at the centre of the cross section is parallel to the impingement jet, thus improving the jet penetration ability and enhancing the impingement heat transfer. In addition, the heat transfer in the semi-elliptical chamber degrades rapidly away from the stagnation region, while the longitudinal vortices enhance the heat transfer further, making the heat transfer coefficient distribution more uniform. The Nusselt number decreases with increase of VR and TR for both the semi-elliptical chamber and the alternating elliptical chamber. The alternating elliptical chamber enhances the heat transfer and moves the stagnation point up for all VR and TR, and the heat transfer enhancement is more obvious at high cross-flow velocity ratio.


Sign in / Sign up

Export Citation Format

Share Document