Comparison of Calculated In-Line Vortex Induced Vibrations to Model Tests

Author(s):  
Elizabeth Passano ◽  
Carl M. Larsen ◽  
Halvor Lie

The purpose of the present paper is to compare vortex-induced vibrations (VIV) in both in-line and cross-flow directions calculated by a semi-empirical computer program to experimental data. The experiments used are the Bearman and Chaplin experiments in which a model of a tensioned riser is partly exposed to current and partly in still water. The VIVANA program is a semi-empirical frequency domain program based on the finite element method. The program was developed by MARINTEK and the Norwegian University of Science and Technology (NTNU) to predict cross-flow response due to VIV. The fluid-structure interaction in VIVANA is described using added mass, excitation and damping coefficients. Later, curves for excitation, added mass and damping for pure in-line VIV response were added. These curves are valid for low current levels, before the onset of cross-flow VIV response. Recently, calculation of response from simultaneous cross-flow and in-line excitation has been included in VIVANA. The in-line response frequency is fixed at twice the cross-flow response frequency and the in-line added mass is adjusted so that this frequency becomes an eigenfrequency. A set of curves based on forces measured during combined cross-flow and inline motions are used. At present, the in-line excitation curves are not dependent on the cross-flow response amplitude. In the paper, in-line and cross-flow response predicted by VIVANA will be compared to the Bearman and Chaplin model tests. The choice of added mass and excitation coefficients will be discussed.

Author(s):  
Elizabeth Passano ◽  
Carl M. Larsen ◽  
Jie Wu

The purpose of this paper is to compare predictions of vortex-induced vibrations (VIV) from a semi-empirical program to experimental data. The data is taken from a VIV model test program of a free span pipeline using a long elastic pipe model. Both in-line (IL) and cross-flow (CF) vibrations are compared. The Norwegian Ormen Lange field development included pipelines laid on very uneven seafloors, resulting in many free spans. As part of the preparations for this field development, VIV model tests of single- and multi-span pipelines were carried out at MARINTEK for Norsk Hydro, which later became a part of Statoil. The VIVANA program is a semi-empirical frequency domain program based on the finite element method. The program was originally developed by MARINTEK and the Norwegian University of Science and Technology (NTNU) to predict cross-flow response due to VIV. The fluid-structure interaction in VIVANA is described using added mass, excitation and damping coefficients. Default curves are available or the user may input other data. VIVANA originally included only cross-flow excitation but pure in-line excitation was later added. Recently, simultaneous cross-flow and in-line excitation has also been included. At present, the excitation in the cross-flow and in-line directions is not coupled. Coefficients for simultaneous cross-flow and in-line excitation have been proposed and are available in VIVANA. In this paper, response predicted by VIVANA has been compared to the Ormen Lange model tests for selected test series. The analyses with pure IL loading gave good estimates of IL response up to and beyond the start of CF response. The analyses with combined CF and IL loading gave good response estimates for the test series with a long span. The experiments with short spans tended to give CF and IL mode 1 response while the present version of the program gave IL response at higher modes. The present coefficient based approach is, however, promising. Further work should aim at establishing better coefficients and to understanding the interaction between CF and IL response.


Author(s):  
Martin So̸reide

As offshore installations are moving into deeper water, engineers have to face new challenges in design of structures. Risers and free-span pipelines, subjected to heavy wave loads and large current velocities, are important components of these installations. Vortex induced vibrations (VIV) is a well known subject for most offshore engineers. VIV can cause large stresses and fatigue damage of slender marine structures. Hence, large safety factors are applied to the fatigue limit state design criterion (FLS), due to uncertainties regarding VIV. The present paper describes the preliminary investigation into the coupling between in-line and cross-flow VIV response. Most experimental data so far has been concentrated on predicting the cross-flow response. However, in-line displacements can make a valuable contribution. In fact, it has been proved that in-line responses may decrease the cross-flow response significantly when allowing the pipe to oscillate in both directions. The paper is based on a master of science thesis at the Norwegian University of Science and Technology (NTNU).


Author(s):  
Vikas Jhingran ◽  
Johnny Vogiatzis ◽  
Juan P. Pontaza ◽  
Li Lee

Recently, small-scale experiments were conducted by [1] to study in-line VIV in pipe spans. The experiments were performed with six different pipes of varying stiffness and mass ratio, but with the same length-to-diameter ratio. The response of the pipe with the lowest mass and stiffness, made out of Acrylonitrile Butadiene Styrene (ABS), was surprising. The in-line RMS A/D response of the ABS pipe was larger and over a much wider reduced velocity range than shown in design codes like DnV F105. Since these codes are commonly used to design real pipelines, the authors were interested in understanding these observations. In the past, observations of VIV response over a wide reduced velocity range have been explained using added mass. This paper shows that though added mass could play an important role, observations of the in-line and cross-flow response mode and frequency content suggests that there could be other reasons for the response observed in the experiments. In particular, this paper investigates the observed large response away from the region of resonant VIV and proposes that this non-resonant in-line response could be different from what researchers typically call VIV. The paper also investigates when such a mechanism could contribute to substantial in-line VIV motion. The implications of this work could be significant, not just for pipe-span design but also for scaling pipes for in-line VIV model tests.


Author(s):  
Gro Sagli Baarholm ◽  
Carl M. Larsen ◽  
Halvor Lie ◽  
Kim Mo̸rk ◽  
Trond Stokka Meling

This paper presents a novel approach for approximate calculation of the fatigue damage from vortex-induced vibrations (VIV) of marine risers. The method is based on experience from a large number of laboratory tests with models of full-length risers, large-scale tests and also full-scale measurements. The method is intended to provide a conservative result and be used for screening purposes at the early design stage. The model is in particular aimed at predicting fatigue for risers that respond at very high mode orders (above 10), but may as well yield valid results for lower mode numbers. The model will, however, not be adequate for free span pipelines or other structures that normally will respond at first and second mode. The riser will be defined in terms of some key parameters like length, weight, tension, hydrodynamic diameter and stress diameter. A current profile perpendicular to the riser in one plane must be known. The program will apply a simple model for calculation of eigenfrequencies and mode shapes, and these are sorted into in-line (IL) and cross-flow (CF) bins. An effective current velocity and excitation length can be defined from the profile and will be applied to identify the dominating cross-flow response frequency and the total displacement rms value. The dominating in-line response frequency is taken as twice the cross-flow frequency, and inline response rms is taken as a given portion of the cross-flow rms value. A set of contributing modes is defined from an assumed frequency bandwidth that reflects observed bandwidths, but also modal composition for cases with discrete frequency response. A simple mode superposition technique is then used to find the set of modes that gives the identified rms values. Bending stresses will be found directly from the curvature of the mode shapes. Fatigue damage will be found from stress rms values, user defined stress concentration factor and given SN curves. The model has been implemented in a simple computer program and verified by comparing results to measurements. The ambition has not been to obtain an exact match between computed results and observations, but to verify that the model gives reasonable but conservative results in almost all cases. However, an unrealistic over prediction of the fatigue damage is not desired. The results are promising, but the need for more information from measurements and response analyses with programs like VIVANA and SHEAR7 is still obvious.


Author(s):  
Raed K. Lubbad ◽  
Sveinung Løset ◽  
Geir Moe

Vortex induced vibrations (VIVs) may cause a large amount of damage to deep water risers. Helical strakes are used as a mitigating measure to suppress these vibrations. The purpose of this paper is to verify the efficiency of round-sectioned helical strakes in suppressing VIV. It is believed that round-sectioned helical strakes can be more readily mounted on risers for intervention and maintenance compared with sharp-edged strakes that may have to be welded onto the risers. Systematic experimental investigations including 28 configurations of round-sectioned helical strakes were tested in an attempt to find the most suitable strake configuration. The experiments were performed in a steady flow flume with an elastically mounted rigid circular cylinder of 500 mm in length and 50 mm in outer diameter. The test cylinder was spring-supported in both the inline and cross-flow directions. The measurements were limited to mapping the displacement of the cylinder. First, the cylinder was tested without strakes as a reference case. The best configuration among the tested round-sectioned helical strake configurations was found to reduce the amplitude of oscillation relative to the bare cylinder case by 96% in the cross-flow direction and by 97% in the inline direction. The main features of this configuration are the number of starts (3), the pitch (5D), and the diameter of the strake (0.15D), where D is the outer diameter of the test cylinder. Additionally, this paper investigates the effects of varying pitch, the effects of surface roughness, and the effects of the ratio between the cross-flow and inline natural frequencies of the test rig on the efficiency of the suggested configuration of round-sectioned helical strakes.


2021 ◽  
Author(s):  
Pierre-Adrien Opinel ◽  
Narakorn Srinil

Abstract This paper presents the experimental investigation of vortex-induced vibrations (VIV) of a flexibly mounted circular cylinder in combined current and wave flows. The same experimental setup has previously been used in our previous study (OMAE2020-18161) on VIV in regular waves. The system comprises a pendulum-type vertical cylinder mounted on two-dimensional springs with equal stiffness in in-line and cross-flow directions. The mass ratio of the system is close to 3, the aspect ratio of the tested cylinder based on its submerged length is close to 27, and the damping in still water is around 3.4%. Three current velocities are considered in this study, namely 0.21 m/s, 0.29 m/s and 0.37 m/s, in combination with the generated regular waves. The cylinder motion is recorded using targets and two Qualisys cameras, and the water elevation is measured utilizing a wave probe. The covered ranges of Keulegan-Carpenter number KC are [9.6–35.4], [12.8–40.9] and [16.3–47.8], and the corresponding ranges of reduced velocity Vr are [8–16.3], [10.6–18.4] and [14–20.5] for the cases with current velocity of 0.21 m/s, 0.29 m/s and 0.37 m/s, respectively. The cylinder response amplitudes, trajectories and vibration frequencies are extracted from the recorded motion signals. In all cases the cylinder oscillates primarily at the flow frequency in the in-line direction, and the in-line VIV component additionally appears for the intermediate (0.29 m/s) and high (0.37 m/s) current velocities. The cross-flow oscillation frequency is principally at two or three times the flow frequency in the low current case, similar to what is observed in pure regular waves. For higher current velocities, the cross-flow frequency tends to lock-in with the system natural frequency, as in the steady flow case. The inline and cross-flow cylinder response amplitudes of the combined current and regular wave flow cases are eventually compared with the amplitudes from the pure current and pure regular wave flow cases.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Jie Wu ◽  
Decao Yin ◽  
Elizabeth Passano ◽  
Halvor Lie ◽  
Ralf Peek ◽  
...  

Abstract Helical strakes can suppress vortex-induced vibrations (VIVs) in pipelines spans and risers. Pure in-line (IL) VIV is more of a concern for pipelines than for risers. To make it possible to assess the effectiveness of partial strake coverage for this case, an important gap in the hydrodynamic data for strakes is filled by the reported IL forced-vibration tests. Therein, a strake-covered rigid cylinder undergoes harmonic purely IL motion while subject to a uniform “flow” created by towing the test rig along SINTEF Ocean's towing tank. These tests cover a range of frequencies, and amplitudes of the harmonic motion to generate added-mass and excitation functions are derived from the in-phase and 90 deg out-of-phase components of the hydrodynamic force on the pipe, respectively. Using these excitation- and added-mass functions in VIVANA together with those from experiments on bare pipe by Aronsen (2007 “An Experimental Investigation of In-Line and Combined In-Line and Cross-Flow Vortex Induced Vibrations,” Ph.D. thesis, Norwegian University of Science and Technology, Trondheim, Norway.), the IL VIV response of partially strake-covered pipeline spans is calculated. It is found that as little as 10% strake coverage at the optimal location effectively suppresses pure IL VIV.


Author(s):  
Jamison L. Szwalek ◽  
Carl M. Larsen

In-line vibrations have been noted to have an important contribution to the fatigue of free spanning pipelines. Still, in-line contributions are not usually accounted for in current VIV prediction models. The present study seeks to broaden the current knowledge regarding in-line vibrations by expanding the work of Aronsen (2007) to include possible Reynolds number effects on pure in-line forced, sinusoidal oscillations for four Reynolds numbers ranging from 9,000 to 36,200. Similar tests were performed for pure cross-flow forced motion as well, mostly to confirm findings from previous research. When experimental uncertainties are accounted for, there appears to be little dependence on Reynolds number for all three hydrodynamic coefficients considered: the force in phase with velocity, the force in phase with acceleration, and the mean drag coefficient. However, trends can still be observed for the in-line added mass in the first instability region and for the transition between the two instability regions for in-line oscillations, and also between the low and high cross-flow added mass regimes. For Re = 9,000, the hydrodynamic coefficients do not appear to be stable and can be regarded as highly Reynolds number dependent.


Author(s):  
Andre´ L. C. Fujarra ◽  
Celso P. Pesce

Vortex Induced Vibrations (VIV) of elastically mounted rigid cylinders, with low mass-damping parameter values, are strongly dependent on the added mass coefficient. This paper aims to contribute to the technical literature by presenting some results from experiments carried out at University of Sa˜o Paulo – USP and at the Sa˜o Paulo State Technological Research Institute – IPT. A cantilevered rigid cylinder was mounted on an elastic (leaf spring) two-degree-of-freedom device. The device is not only an elastic support, but acts also as a special mechanical transducer to measure accelerations/forces/displacements in the stream-wise (x) and the cross-wise (y) directions. A comprehensive experimental calibration of such a device was carried out, both “in air” and “in water”. The added mass coefficient in the cross-wise direction was indirectly determined from forces and acceleration measurements as a function of the reduced velocity. Results from time-domain and frequency-domain analyses are compared with those obtained by Vikestad et al. (2000) [1].


Author(s):  
Baiheng Wu ◽  
Jorlyn Le Garrec ◽  
Dixia Fan ◽  
Michael S. Triantafyllou

Currents and waves cause flow-structure interaction problems in systems installed in the ocean. Particularly for bluff bodies, vortices form in the body wake, which can cause strong structural vibrations (Vortex-Induced Vibrations, VIV). The magnitude and frequency content of VIV is determined by the shape, material properties, and size of the bluff body, and the nature and velocity of the oncoming flow. Riser systems are extensively used in the ocean to drill for oil wells, or produce oil and gas from the bottom of the ocean. Risers often consist of a central pipe, surrounded by several smaller cylinders, including the kill and choke lines. We present a series of experiments involving forced in-line and cross flow motions of short rigid sections of a riser containing 6 symmetrically arranged kill and choke lines. The experiments were carried out at the MIT Towing Tank. We present a systematic database of the hydrodynamic coefficients, consisting of the forces in phase with velocity and the added mass coefficients that are also suitable to be used with semi-empirical VIV predicting codes.


Sign in / Sign up

Export Citation Format

Share Document