Role of Unsaturated Soil Properties in The Development of Slope Susceptibility Map

Author(s):  
Alfrendo Satyanaga ◽  
Harianto Rahardjo
2019 ◽  
Vol 6 (04) ◽  
Author(s):  
MINAKSHI SERAWAT ◽  
V K PHOGAT ◽  
ANIL Abdul KAPOOR ◽  
VIJAY KANT SINGH ◽  
ASHA SERAWAT

Soil crust strength influences seedling emergence, penetration and morphology of plant roots, and, consequently, crop yields. A study was carried out to assess the role of different soil properties on crust strength atHisar, Haryana, India. The soil samples from 0-5 and 5-15 cm depths were collected from 21 locations from farmer’s fields, having a wide range of texture.Soil propertieswere evaluated in the laboratory and theirinfluence on the modulus of rupture (MOR), which is the measure of crust strength, was evaluated.The MOR of texturally different soils was significantly correlated with saturated hydraulic conductivity at both the depths. Dispersion ratio was found to decrease with an increase in fineness of the texture of soil and the lowest value was recorded in silty clay loam soil,which decreased with depth. The modulus of rupture was significantly negatively correlative with the dispersion ratio.There was no role of calcium carbonate in influencing the values of MOR of soils. Similarly,the influence of pH, EC and SAR of soil solution on MOR was non-significant.A perusal of thevalues of the correlations between MOR and different soil properties showed that the MOR of soils of Haryana are positively correlated with silt + clay (r = 0.805) followed by water-stable aggregates (r = 0.774), organic carbon (r = 0.738), silt (r = 0.711), mean weight diameter (r = 0.608) and clay (r = 0.593) while negatively correlated with dispersion ratio (r = - 0.872), sand (r = -0.801) and hydraulic conductivity (r = -0.752) of soils.


1996 ◽  
Vol 19 ◽  
pp. 93-114
Author(s):  
Antonio José Teixeira Guerra ◽  
Rosangela Garrido Machado Botelho

This paper regards the role of soil characteristics and properties on pedological surveys and soil erosion investigations. Therefore, the main factors of soil formation are here discussed. Furthermore, the main chemical and physical soil properties are also taken into consideration, in order to approach this subject. Finally, some erosion processes are also carried out, together with the main erosion forms and the environmental impacts caused by these associated processes.


Author(s):  
Shaoyang Dong ◽  
Yuan Guo ◽  
Xiong (Bill) Yu

Hydraulic conductivity and soil-water retention are two critical soil properties describing the fluid flow in unsaturated soils. Existing experimental procedures tend to be time consuming and labor intensive. This paper describes a heuristic approach that combines a limited number of experimental measurements with a computational model with random finite element to significantly accelerate the process. A microstructure-based model is established to describe unsaturated soils with distribution of phases based on their respective volumetric contents. The model is converted into a finite element model, in which the intrinsic hydraulic properties of each phase (soil particle, water, and air) are applied based on the microscopic structures. The bulk hydraulic properties are then determined based on discharge rate using Darcy’s law. The intrinsic permeability of each phase of soil is first calibrated from soil measured under dry and saturated conditions, which is then used to predict the hydraulic conductivities at different extents of saturation. The results match the experimental data closely. Mualem’s equation is applied to fit the pore size parameter based on the hydraulic conductivity. From these, the soil-water characteristic curve is predicted from van Genuchten’s equation. The simulation results are compared with the experimental results from documented studies, and excellent agreements were observed. Overall, this study provides a new modeling-based approach to predict the hydraulic conductivity function and soil-water characteristic curve of unsaturated soils based on measurement at complete dry or completely saturated conditions. An efficient way to measure these critical unsaturated soil properties will be of benefit in introducing unsaturated soil mechanics into engineering practice.


2021 ◽  
Author(s):  
Mátyás Árvai ◽  
Zoltán Czajlik ◽  
János Mészáros ◽  
Balázs Nagy ◽  
László Pásztor

<p>Cropmarks are a major factor in the effectiveness of traditional aerial archaeology. The positive and negative features shown up by cropmarks are the role of the different cultivated plants and the importance of precipitation and other elements of the physical environment. In co-operation with the experts of the Eötvös Loránd University a new research was initiated to compare the pedological features of cropmark plots (CMP) and non-cropmark plots (nCMP) in order to identify demonstrable differences between them. For this purpose, the spatial soil information on primary soil properties provided by DOSoReMI.hu was employed. To compensate for the inherent vagueness of spatial predictions, together with the fact that the definition of CMPs and nCMPs is somewhat indefinite, the comparisons were carried out using data-driven, statistical approaches. In the first round three pilot areas were investigated, where Chernozem and Meadow type soils proved to be correlated with the formation of cropmarks. Kolmogorov-Smirnov tests and Random Forest models showed a different relative predominance of pedological variables in each study area. The geomorphological differences between the study areas explain these variations satisfactorily. In the next round, the identified relationships between cropmarking and soil features are planned to be utilized in the spatial inference of soil properties, where crop-marking sites will represent a unique, spatially non-exhaustive auxiliary information.</p>


Author(s):  
Brena Li En Tan ◽  
Alfrendo Satyanaga ◽  
Mărgărit-Mircea Nistor ◽  
Martin Wijaya ◽  
Harianto Rahardjo

2019 ◽  
Vol 7 (2) ◽  
pp. 133-138
Author(s):  
Anthony K. Leung ◽  
David Boldrin ◽  
Ali A. Karimzadeh ◽  
Anthony G. Bengough

2014 ◽  
Vol 363 ◽  
pp. 145-163 ◽  
Author(s):  
Jens Hartmann ◽  
Nils Moosdorf ◽  
Ronny Lauerwald ◽  
Matthias Hinderer ◽  
A. Joshua West

Sign in / Sign up

Export Citation Format

Share Document