scholarly journals Características e propriedades dos solos relevantes para os estudos pedológicos e análise dos processos erosivos

1996 ◽  
Vol 19 ◽  
pp. 93-114
Author(s):  
Antonio José Teixeira Guerra ◽  
Rosangela Garrido Machado Botelho

This paper regards the role of soil characteristics and properties on pedological surveys and soil erosion investigations. Therefore, the main factors of soil formation are here discussed. Furthermore, the main chemical and physical soil properties are also taken into consideration, in order to approach this subject. Finally, some erosion processes are also carried out, together with the main erosion forms and the environmental impacts caused by these associated processes.

Author(s):  
Gintaras JARAŠIŪNAS ◽  
Irena KINDERIENĖ

The objective of this study was to evaluate the impact of different land use systems on soil erosion rates, surface evolution processes and physico-chemical properties on a moraine hilly topography in Lithuania. The soil of the experimental site is Bathihypogleyi – Eutric Albeluvisols (abe–gld–w) whose texture is a sandy loam. After a 27-year use of different land conservation systems, three critical slope segments (slightly eroded, active erosion and accumulation) were formed. Soil physical properties of the soil texture and particle sizes distribution were examined. Chemical properties analysed for were soil ph, available phosphorus (P) and potassium (K), soil organic carbon (SOC) and total nitrogen (N). We estimated the variation in thickness of the soil Ap horizon and soil physico-chemical properties prone to a sustained erosion process. During the study period (2010–2012) water erosion occurred under the grain– grass and grass–grain crop rotations, at rates of 1.38 and 0.11 m3 ha–1 yr–1, respectively. Soil exhumed due to erosion from elevated positions accumulated in the slope bottom. As a result, topographic transfiguration of hills and changes in soil properties occurred. However, the accumulation segments of slopes had significantly higher silt/clay ratios and SOC content. In the active erosion segments a lighter soil texture and lower soil ph were recorded. Only long-term grassland completely stopped soil erosion effects; therefore geomorphologic change and degradation of hills was estimated there as minimal.


2011 ◽  
Vol 14 (4) ◽  
pp. 41-50
Author(s):  
Ngan Truong Nguyen

Soil erosion is a global environmental problem. The affecting main factors for soil erosion processes are different due to the specific areas. The calculated results of soil erosion, by Ha Quang Hai and Tran Tuan Tu, demonstrated that Song Be basin is eroded very huge, about 321 tons/ha/year. The article is based on factors proposed by R.P.C Morgan in 2005, using the analytic hierarchy process AHP (Thomas L. Saaty, 1970) to determine the weights for these factors. Since then, the article concluded main factors affecting soil erosion at Song Be basin. Research results showed that the Terrain factor has the largest weight (0.30), followed by two factors: Plant cover (0.29) and Rain (0.28). The article also identified four main factors impacting on the soil erosion at Song Be basin, including: slope, land cover ratio, intensity of rainfall and slope length. These results will be the basis for subsequent studies to adjust USLE model more applicably for erosion characteristics in the researched area.


2021 ◽  
Author(s):  
Rosolino Ingraffia ◽  
Gaetano Amato ◽  
Vincenzo Bagarello ◽  
Francesco G. Carollo ◽  
Dario Giambalvo ◽  
...  

Abstract. Microplastic is recognized as a factor of global change affecting many environmental compartments. Agricultural soils are likely hotspots of microplastic contamination in terrestrial ecosystems and are of particular concern due to their role in food production. Microplastic has already been shown to be able to affect soil properties, but its effect on different soil types is poorly understood. Moreover, no information is available on how the presence of this pollutant can affect soil water erosion processes, which are extremely important issues in many environments. In the light of this, we performed two experiments (a microcosm and a mesocosm study) to investigate how the presence of polyester microplastic fibers affects soil physical and hydrological parameters and processes such as aggregate formation and soil erosion in three different agricultural soil types. Our data show that the effects of polyester microplastic on soil physical parameters (including soil aggregation and erosion) are strongly dependent on soil type. We found that microplastic contamination can decrease the formation of new aggregates but at the same time increase their stability in water, with effects on soil erosion stronger as the intrinsic erodibility of soil increases. Overall, our results highlight the importance of broadly exploring soil properties such as texture, mineralogy, and organic carbon content to better understand how the various soil types respond to microplastic contamination.


Soil Research ◽  
1997 ◽  
Vol 35 (6) ◽  
pp. 1359 ◽  
Author(s):  
B. Fentie ◽  
C. W. Rose ◽  
K. J. Coughlan ◽  
C. A. A. Ciesiolka

We examined, both experimentally and theoretically, whether rilling results in higher soil erosion than would have occurred without rilling. The possibility of rilling occurs when overland flow-driven erosion processes are dominant over erosion due to raindrop impact, and that is the situation assumed in this paper. Stream power (or a quantity related to stream power such as shear stress) is commonly used to describe the driving variable in flow-driven erosion. Five flume experiments were designed to investigate the relationship between stream power and sediment concentration and how this relationship is affected by the ratio of width to depth of flow (r), and the frequency or number of rills per metre width (N) of rectangular rills. This paper presents the results of these experiments and uses a physically based soil erosion theory to show that the results of the 5 flume experiments are in accord with this theory. This theory is used to investigate the effect of all possible rectangular rill geometries and frequencies on the maximum possible sediment concentration, i.e. the sediment concentration at the transport limit, by developing general relationships for the influence of r and N on sediment concentration. It is shown that increased stream power, which can be due to rilling, does not necessarily result in higher sediment concentration.


2020 ◽  
Vol 15 (No. 2) ◽  
pp. 116-124
Author(s):  
Petra Bíla ◽  
Bořivoj Šarapatka ◽  
Ondřej Horňák ◽  
Jaroslava Novotná ◽  
Martin Brtnický

Soil erosion, especially water erosion, is one of the most widespread types of soil degradation, not only worldwide, but also within the Czech Republic, where it endangers more than a half of the agricultural land. In addition to farming, the landscape structure has a significant impact on soil erosion in the conditions under study, where, especially in the post-war period, the collectivisation of large-scale arable land was accompanied by the abolition of the associated landscape elements. The agricultural production area of South Moravia is one of the most endangered areas in the Czech Republic, therefore, it was selected for our research, whose main objective was to verify the sensitivity of the selected physical, chemical and biochemical characteristics to identify the changes in the soil properties in the erosion processes at the identified erosion areas. The testing was carried out within a period of 5 years in 60 locations with Chernozems with cultivated corn. To assess the quality of the soil properties, indicators of soil quality from the physical, chemical and biological – biochemical groups were selected. The results of the analyses and the subsequent statistical evaluation showed that the chemical characteristics, especially those related to the quantity and quality of the organic matter, were the most sensitive to the changes in the soil properties. From the biochemical indicators, some enzymes, particularly dehydrogenase and acid phosphatase, reacted sensitively. The physical characteristics were not significantly affected by the erosion processes.


2014 ◽  
Vol 14 (7) ◽  
pp. 1761-1771 ◽  
Author(s):  
S. Stanchi ◽  
M. Freppaz ◽  
E. Ceaglio ◽  
M. Maggioni ◽  
K. Meusburger ◽  
...  

Abstract. Soil erosion in Alpine areas is mainly related to extreme topographic and weather conditions. Although different methods of assessing soil erosion exist, the knowledge of erosive forces of the snow cover needs more investigation in order to allow soil erosion modeling in areas where the snow lays on the ground for several months. This study aims to assess whether the RUSLE (Revised Universal Soil Loss Equation) empirical prediction model, which gives an estimation of water erosion in t ha yr−1 obtained from a combination of five factors (rainfall erosivity, soil erodibility, topography, soil cover, protection practices) can be applied to mountain areas by introducing a winter factor (W), which should account for the soil erosion occurring in winter time by the snow cover. The W factor is calculated from the ratio of Ceasium-137 (137Cs) to RUSLE erosion rates. Ceasium-137 is another possible way of assessing soil erosion rates in the field. In contrast to RUSLE, it not only provides water-induced erosion but integrates all erosion agents involved. Thus, we hypothesize that in mountain areas the difference between the two approaches is related to the soil erosion by snow. In this study we compared 137Cs-based measurement of soil redistribution and soil loss estimated with RUSLE in a mountain slope affected by avalanches, in order to assess the relative importance of winter erosion processes such as snow gliding and full-depth avalanches. Three subareas were considered: DS, avalanche defense structures, RA, release area, and TA, track area, characterized by different prevalent winter processes. The RUSLE estimates and the 137Cs redistribution gave significantly different results. The resulting ranges of W evidenced relevant differences in the role of winter erosion in the considered subareas, and the application of an avalanche simulation model corroborated these findings. Thus, the higher rates obtained with the 137Cs method confirmed the relevant role of winter soil erosion. Despite the limited sample size (11 points), the inclusion of a W factor in RUSLE seems promising for the improvement of soil erosion estimates in Alpine environments affected by snow movements.


ASJ. ◽  
2020 ◽  
Vol 1 (37) ◽  
pp. 40-40
Author(s):  
V.A. Rozhkov

The thesis is put forward that all the classifications of soils existing in the world do not possess the attributes of such a concept accepted in science and its technical applications but are only lists of author's names of soils. The names are substantiated mainly by factors of soil formation (natural zoning, vegetation, series, etc.), on weakly reasoned genetic horizons and small unformalized aggregates of soil properties. At the Soil Institute Named After V.V. Dokuchaev of the Russian Academy of Science, a mathematical apparatus for the development and use of digital soil classifications was created.


2018 ◽  
Vol 18 (12) ◽  
pp. 3378-3387 ◽  
Author(s):  
Valeria Altieri ◽  
Silvio De Franco ◽  
Fabio Lombardi ◽  
Pasquale Antonio Marziliano ◽  
Giuliano Menguzzato ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
S. Wirtz ◽  
T. Iserloh ◽  
G. Rock ◽  
R. Hansen ◽  
M. Marzen ◽  
...  

The present paper is based on several field investigations (monitoring soil and rill erosion by aerial photography, rainfall simulations with portable rainfall simulators, and manmade rill flooding) in southern Spain. Experiments lead now to a closer understanding of the dynamics and power of different soil erosion processes in a gully catchment area. The test site Freila (Andalusia, Spain) covers an area of 10.01 ha with a rill density of 169 m ha−1, corresponding to a total rill length of 1694 m. Assuming an average rill width of 0.15 m, the total rill surface can be calculated at 250 m2 (0.025 ha). Given that, the surface covered by rills makes up only 0.25% of the total test site. Since the rill network drains 1.98 ha, 20% of the total runoff comes from rills. The rills’ sediment erosion was measured and the total soil loss was then calculated for detachment rates between 1685 g m−2 and 3018 g m−2. The interrill areas (99.75% of the test site) show values between 29 and 143 g m−2. This suggests an important role of rill erosion concerning runoff and soil detachment.


Sign in / Sign up

Export Citation Format

Share Document