scholarly journals Early T Cell Activation Correlates with Expression of Apoptosis Markers in Patients with End-Stage Renal Disease

2002 ◽  
Vol 13 (1) ◽  
pp. 204-212
Author(s):  
Pascal Meier ◽  
Eric Dayer ◽  
Edouard Blanc ◽  
Jean-Pierre Wauters

ABSTRACT. End-stage renal failure (ESRF) and chronic hemodialysis (HD) induce a state of immunodeficiency that involves T cell-mediated responses. A decreased T cell number combined with a reduced T cell lifespan and an increased T cell activation might play a role in the immune impairment associated with ESRF and chronic HD. Increased T cell activation associated with immunodeficiency suggests that activated T cells may be driven to apoptosis. To test this hypothesis, CD3+ T cell activation (CD69) and apoptosis (annexin V, CD95 (Fas), and DNA fragmentation) were analyzed in a case control study after blood draw sampling (ex vivo), in culture conditions, and after phytohemagglutinin or anti-CD3 stimulation. Ex vivo evaluation of T cells showed an increased number of activated CD69+ T cells in chronic HD patients (142 ± 5 cells/mm3) compared with patients with ESRF (115 ± 2 cells/mm3, P = 0.04) and controls (74 ± 2 cells/mm3, P = 0.0006). These data were confirmed in culture conditions and after stimulation. Similarly, annexin V and CD95 (Fas)-positive T cells were more numerous in both patient groups than in controls, irrespective of the experimental conditions (P ≤ 0.005 for both markers), and their percentage was always significantly higher in chronic HD patients than in patients with ESRF. The amount of DNA fragmentation was also significantly higher in the cultured resting T cells of chronic HD patients (37 ± 3%) than in those of patients with ESRF (25 ± 3%) and controls (20 ± 2%) (P = 0.01). Percentage of cultured resting T cells expressing both CD69 and annexin V markers was higher in chronic HD patients (17 ± 4%) than in patients with ESRF (10 ± 4%) and controls (6 ± 2%), (P = 0.005). After stimulation (phytohemagglutinin or anti-CD3), CD69+ T cell apoptosis increased by 2.4-fold in chronic HD patients compared with 1.8-fold in patients with ESRF and only 1.2-fold in controls (P = 0.001). T cells from chronic HD patients and patients with ESRF thus showed an aberrant state of early activation that contrasted with an increased proportion of annexin V and CD95 (Fas)-positive T cells engaged in apoptosis, as confirmed by DNA fragmentation. Increased susceptibility to early activated T cell apoptosis is not only associated with uremia, but is also enhanced by HD procedure. This may account for the T lymphopenia, progressive immunodeficiency, and increased infection risk seen in these patients.

2019 ◽  
Author(s):  
Bulent Arman Aksoy ◽  
Eric Czech ◽  
Chrystal Paulos ◽  
Jeff Hammerbacher

AbstractBead-based activation is widely-used for ex vivo expansion of T cells for either research or clinical purposes. Despite its wide use, culture conditions that can potentially affect the efficiency of bead-based T cell activation has not been extensively documented. With the help of computationally-driven experimental investigations of basic culturing factors, we found that culture density, bead-to-cell ratio, and debeading time can have a major impact on the efficiency of bead-based T cell activation for short-term cultures. Furthermore, discrepancies across expected and observed activation efficiencies helped discover interesting artifacts of bead-based T cell activation.Human primary T cells were imaged together with activation beads at 20X magnification after three hours of culturing at varying confluencies and bead-to-cell ratios.


Blood ◽  
2021 ◽  
Author(s):  
Muzaffar H Qazilbash ◽  
Neeraj Y Saini ◽  
Cha Soung-chul ◽  
Zhe Wang ◽  
Edward Stadtmauer ◽  
...  

We hypothesized that combining adoptively transferred autologous T cells with a cancer vaccine strategy would enhance therapeutic efficacy by adding anti-myeloma idiotype-keyhole limpet hemocyanin (Id-KLH) vaccine to vaccine-specific co-stimulated T cells. In this randomized, phase II trial, eligible patients received either the control (KLH only) or Id-KLH vaccine, an auto-transplant, vaccine-specific co-stimulated T-cells expanded ex-vivo, and two booster doses of the assigned vaccine. In 36 patients (20 in KLH, 16 in Id-KLH) enrolled, no dose-limiting toxicity was seen in either arm. At last evaluation, 6 (30%) and 8 (50%) had achieved complete remission in KLH-only and Id-KLH, respectively (p=0.22) and no difference in 3-year progression-free survival was observed (59% and 56%, respectively; p=0.32). In a 594 Nanostring nCounter gene panel analyzed for immune reconstitution (IR), compared with KLH-only patients, there was a greater change in IR genes in T-cells in Id-KLH patients relative to baseline. Specifically, upregulation of genes associated with activation, induction of effector function, and generation of memory CD8+ T cells after Id-KLH, but not after KLH control vaccination, was observed. Similarly, responding patients across both arms were associated with upregulation of genes associated with T-cell activation. At baseline, all patients had greater expression of CD8+ T-cell exhaustion markers. These changes were associated with functional Id-specific immune responses in a subset of Id-KLH patients analyzed. In conclusion, in this combination immunotherapy approach, we observed a significantly more robust IR in CD4+ and CD8+ T cells in the Id-KLH arm, supporting further investigation of vaccine and adoptive immunotherapy strategies.


2020 ◽  
Author(s):  
Thomas Vollbrecht ◽  
Aaron O. Angerstein ◽  
Bryson Menke ◽  
Nikesh M. Kumar ◽  
Michelli Faria Oliveira ◽  
...  

Abstract BackgroundA reservoir of replication-competent but latent virus is the main obstacle to a cure for HIV-infection. Much of this reservoir resides in memory CD4 T cells. We hypothesized that these cells can be reactivated with antigens from HIV and other common pathogens to reverse latency. ResultsWe obtained mononuclear cells from the peripheral blood of antiretroviral-treated patients with suppressed viremia. We tested pools of peptides and proteins derived from HIV and from other pathogens including CMV for their ability to reverse latency ex vivo by activation of memory responses. We assessed activation of the CD4 T cells by measuring the up-regulation of cell-surface CD69. We assessed HIV-expression using two assays: a real-time PCR assay for virion-associated viral RNA and a droplet digital PCR assay for cell-associated, multiply spliced viral mRNA. Reversal of latency occurred in a minority of cells from some participants, but no single antigen induced HIV-expression ex vivo consistently. When reversal of latency was induced by a specific peptide pool or protein, the extent was proportionally greater than that of T cell activation. ConclusionsIn this group of patients in whom antiretroviral therapy was started during chronic infection, the latent reservoir does not appear to consistently reside in CD4 T cells of a predominant antigen-specificity. Peptide-antigens reversed HIV-latency ex vivo with modest and variable activity. When latency was reversed by specific peptides or proteins, it was proportionally greater than the extent of T cell activation, suggesting partial enrichment of the latent reservoir in cells of specific antigen-reactivity.


2010 ◽  
Vol 207 (8) ◽  
pp. 1791-1804 ◽  
Author(s):  
Elizabeth D. Thompson ◽  
Hilda L. Enriquez ◽  
Yang-Xin Fu ◽  
Victor H. Engelhard

Studies of T cell responses to tumors have focused on the draining lymph node (LN) as the site of activation. We examined the tumor mass as a potential site of activation after adoptive transfer of naive tumor-specific CD8 T cells. Activated CD8 T cells were present in tumors within 24 h of adoptive transfer and proliferation of these cells was also evident 4–5 d later in mice treated with FTY720 to prevent infiltration of cells activated in LNs. To confirm that activation of these T cells occurred in the tumor and not the tumor-draining LNs, we used mice lacking LNs. Activated and proliferating tumor-infiltrating lymphocytes were evident in these mice 24 h and 4 d after naive cell transfer. T cells activated within tumors acquired effector function that was evident both ex vivo and in vivo. Both cross-presenting antigen presenting cells within the tumor and tumor cells directly presenting antigen activated these functional CD8 effectors. We conclude that tumors support the infiltration, activation, and effector differentiation of naive CD8 T cells, despite the presence of immunosuppressive mechanisms. Thus, targeting of T cell activation to tumors may present a tool in the development of cancer immunotherapy.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
S. Mburu ◽  
J. L. Marnewick ◽  
A. Abayomi ◽  
H. Ipp

Persistent immune activation characterises HIV infection and is associated with depletion of CD4+ T-cells and increased risk of disease progression. Early loss of gut mucosal integrity results in the translocation of microbial products such as lipopolysaccharide (LPS) into the systemic circulation. This is an important source of on-going immune stimulation. The purpose of this study was to determine levels of CD4+ T-cell activation (%CD25 expression) and apoptosis (% annexin V/7-AAD) in asymptomatic, untreated HIV infection at baseline and after stimulation with LPS and incubation with or without vitamin C and N-acetylcysteine. LPS induced a significant (P<0.03) increase in %CD25 expression, annexin V, and 7-AAD in HIV positive individuals. NAC in combination with vitamin C, significantly (P=0.0018) reduced activation and early apoptosis of CD4+ T-cells to a greater degree than with either antioxidant alone. Certain combinations of antioxidants could be important in reducing the harmful effects of chronic immune activation and thereby limit CD4+ T-cell depletion. Importantly, we showed that CD4+ T-cells of the HIV positive group responded better to a combination of the antioxidants at this stage than those of the controls. Therefore, appropriate intervention at this asymptomatic stage could rescue the cells before repetitive activation results in the death of CD4+ T-cells.


2021 ◽  
Author(s):  
Rabiah Fardoos ◽  
Sarah K. Nyquist ◽  
Osaretin E. Asowata ◽  
Samuel W. Kazer ◽  
Alveera Singh ◽  
...  

Lymphoid tissues are an important HIV reservoir site that persists in the face of antiretroviral therapy and natural immunity. Targeting these reservoirs by harnessing the antiviral activity of local tissue resident memory (TRM) CD8+ T-cells is of great interest, but limited data exist on TRMs within lymph nodes of people living with HIV (PLWH). Here, we studied tonsil CD8+ T-cells obtained from PLWH and uninfected controls from South Africa. We show that these cells are preferentially located outside the germinal centers (GCs), the main reservoir site for HIV, and display a low cytolytic and transcriptionally TRM-like profile that is distinct from blood. In PLWH, CD8+ TRM-like cells are highly expanded and adopt a more cytolytic, activated and exhausted phenotype characterized by increased expression of CD69, PD-1 and perforin, but reduced CD127. This phenotype was enhanced in HIV-specific CD8+ T-cells from tonsils compared to matched blood. Single-cell profiling of these cells revealed a clear transcriptional signature of T-cell activation, clonal expansion and exhaustion ex-vivo. In contrast, this signature was absent from HIV-specific CD8+ T-cells in tonsils isolated from a natural HIV controller, who expressed lower levels of cell surface PD-1 and CXCR5, and reduced transcriptional evidence of T-cell activation, exhaustion and cytolytic activity. Thus, we show that HIV-specific TRM-like CD8+ T-cells in tonsils from non-HIV controllers are enriched for activation and exhaustion profiles compared to those in blood, suggesting that lymphoid HIV specific CD8+ TRM cells are potentially ideal candidates for immunotherapy to modulate their ability to targeting the HIV reservoirs.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3886-3886
Author(s):  
Hong Yin ◽  
Yi Huo ◽  
Zhen Sheng ◽  
Chi-Ming Li ◽  
Daniel C Ellwanger ◽  
...  

Introduction Blinatumomab, a bi-specific T cell engager (BiTE®) combining the VH and VL domains of two antibodies against human CD19 and CD3, has been approved by U.S. Food and Drug Administration (FDA) for the treatment of patients with relapsed or refractory B precursor ALL (r/r B-ALL) for its clinical benefit demonstrated in different clinical trials. Clinical trials have also shown that there are still patients refractory to blinatumomab. It is thus important to understand the resistance mechanisms. Blinatumomab connects patients' autologous T cells and target cells to form immunologic synapse which potently triggers the activation signaling cascades in T cells and guides T cells to recognize and induce perforin/granzyme-mediated lysis of CD19+ B-ALL cells. Previous studies showed blinatumomab-mediated cytotoxicity involves different T cell subpopulations. But response of each T cell subpopulation to blinatumomab treatment remained largely unknown. Methods and Results In this study, we used 10X Genomics based single cell RNA sequencing to analyze the transcriptome of single T cells before and after blinatumomab treatment. First, ex vivo blinatumomab cytotoxicity model was established, in which healthy PBMCs were used as effector cells and cocultured with target cells (RS4;11 cells or SUP-B15 cells) at an effector-to-target cell ratio of 10:1 with 0.1 ng/mL blinatumomab. Then, PBMCs and BMMCs from 2 B-ALL patients were cultured with 10 ng/mL blinatumomab. Cells from both ex vivo model and patient samples were sequenced using 10X Genomics platform. In total, transcriptome of 17920 single T cells from the ex vivo model and 2271 single T cells from patient sample were analyzed. Based on T cell trajectory analysis, we identified four distinct populations of blinatumomab-activated T cells, which were derived from CD8+ effector memory T (TEM) cells, CD4+ central memory (TCM) cells, naïve T cells and Tregs, respectively. The differentially expressed genes in activated clusters were analyzed to reflect T cell activation mechanisms. The result showed blinatumomab induced the upregulation of aerobic glycolysis pathway (PKM, PGAM1, ENO1, GAPDH and LDHA), cytoskeleton dynamics pathway (ACTD1, ACTB, NME1 and TUBA1B), IFN-responsive pathway (GBP1, PSME2, WARS, CXCL10 and STAT1), and the upregulation of well-known immune-related genes (TNFRSF4, TNFRSF18, LAG3, CD69, IL2RA, MIR155HG, BATF, SH2D2A, LTA, NFKBIA and NDFIP2). We found blinatumomab-activated CD8+ TEM cells showed stronger cytotoxic capability than other activated populations with specific production of cytotoxic factors (PRF1, IFNG and FASLG) and cytokines (CCL2, CCL3, CCL3L1, CCL4, CCL4L2, CCL8, XCL1, XCL2, TNFSF9 and TNFSF14). Last, differential gene expression analysis revealed that co-stimulatory (TNFRSF4,TNFRSF9 and TNFRSF18) and co-inhibitory receptors (LAG3 and TIGIT) were similarly up-regulated in clusters activated from memory and naïve T cells, indicating ligand dependent T cell functional outcomes induced by blinatumomab. Conclusion In summary, we used single cell sequencing to map the blinatumomab-mediated T cell activation state transition and reveal the molecular changes in different T cell subpopulations. Memory T cells, naïve T cells and Tregs were identified functional populations after blinatumomab treatment. CD8+ TEM accounted for the majority of blinatumomab-induced cytotoxicity. Furthermore, T cell co-regulatory receptors were identified as potential targets accountable for blinatumomab sensitivity or resistance mechanisms. The study demonstrated that the collected cellular transcriptional profiles can serve as resource to explore novel strategies to enhance the efficacy of blinatumomab. Disclosures Yin: Amgen: Employment. Huo:Amgen: Employment. Sheng:Amgen: Employment. Li:Amgen: Employment. Ellwanger:Amgen: Employment. Lu:Amgen: Employment. Homann:Amgen: Employment. Wang:Amgen: Employment. Ren:Ruijin hospital: Employment.


2002 ◽  
Vol 195 (12) ◽  
pp. 1653-1659 ◽  
Author(s):  
Alexis M. Kalergis ◽  
Jeffrey V. Ravetch

Induction of tumor-specific immunity requires that dendritic cells (DCs) efficiently capture and present tumor antigens to result in the expansion and activation of tumor-specific cytotoxic T cells. The transition from antigen capture to T cell stimulation requires a maturation signal; in its absence tolerance, rather than immunity may develop. While immune complexes (ICs) are able to enhance antigen capture, they can be poor at inducing DC maturation, naive T cell activation and protective immunity. We now demonstrate that interfering with the inhibitory signal delivered by FcγRIIB on DCs converts ICs to potent maturation agents and results in T cell activation. Applying this approach to immunization with DCs pulsed ex-vivo with ICs, we have generated antigen-specific CD8+ T cells in vivo and achieved efficient protective immunity in a murine melanoma model. These data imply that ICs may normally function to maintain tolerance through the binding to inhibitory FcγRs on DCs, but they can be converted to potent immunogenic stimuli by selective engagement of activating FcγRs. This mechanism suggests a novel approach to the development of tumor vaccines.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A533-A533
Author(s):  
Faizah Alotaibi ◽  
Mark Vincent ◽  
Weiping Min ◽  
James Koropatnick

BackgroundCD5, a member of the scavenger receptor cysteine-rich superfamily, is a marker for T cells and a subset of B cells (B1a). CD5 associates with T-cell and B-cell receptors and impair TCR signaling1 2 and increased CD5 is an indication of B cell activation. Furthermore, CD5 levels on CD8+ T cell splenocytes were significantly increased after TCR/CD3 stimulation using ex vivo treatment with anti-CD3/anti-CD28 MAbs compared to non-stimulated CD8+ T splenocytes.3 Previous studies have shown a correlation between CD5 and anti-tumour immunity where CD5 knockout mice inoculated with B16F10 melanoma cells had delayed tumour growth compared to wild type mice.4 In tumour-infiltrating lymphocytes (TILs) isolated from lung cancer patients, CD5 levels were negatively correlated with anti-tumour activity and tumour-mediated activation-induced T cell death,5 suggesting that CD5 could impair activation of anti-tumour T cells. However, the correlation between CD5 level expression and T cell activation and exhaustion in the tumour microenvironment and in peripheral organs is ill-defined and requires further investigation.MethodsWe determined CD5 levels in T cell subsets in different organs in mice bearing syngeneic 4T1 breast tumour homografts and assessed the relationship between CD5 and increased CD69 and PD-1 (markers of T cell activation and exhaustion) by flow cytometry.ResultsWe report that T cell CD5 levels were higher in CD4+ T cells than in CD8+ T cells in 4T1 tumour-bearing mice, and that high CD5 levels on CD4+ T cells were maintained in peripheral organs (spleen and lymph nodes). However, both CD4+ and CD8+ T cells recruited to tumours had reduced CD5 compared to CD4+ and CD8+ T cells in peripheral organs. In addition, CD5highCD4+ T cells and CD5highCD8+ T cells from peripheral organs exhibited higher levels of activation and associated exhaustion compared to CD5lowCD4+ T cell and CD5lowCD8+ T cell from the same organs. Interestingly, CD8+ T cells among TILs and downregulated CD5 were activated to a higher level, with concomitantly increased exhaustion markers, than CD8+CD5+ TILs.ConclusionsThus, differential CD5 levels among T cells in tumours and lymphoid organs can be associated with different levels of T cell activation and exhaustion, suggesting that CD5 may be a therapeutic target for immunotherapeutic activation in cancer therapy.AcknowledgementsThe author thanks Rene Figueredo and Ronak Zareardalan for their assistance in animal workEthics ApprovalThis study was approved by the Animal Use Subcommittee of the University of Western OntarioReferencesAzzam HS, et al., Fine tuning of TCR signaling by CD5. The Journal of Immunology 2001. 166(9): p. 5464–5472.Voisinne GA, Gonzalez de Peredo and Roncagalli R. CD5, an undercover regulator of TCR signaling. Frontiers in Immunology 2018;9:p. 2900.Alotaibi, F., et al., CD5 blockade enhances ex vivo CD8+ T cell activation and tumour cell cytotoxicity. European journal of immunology 2020;50(5): p. 695–704.Tabbekh, M., et al., Rescue of tumor-infiltrating lymphocytes from activation-induced cell death enhances the antitumor CTL response in CD5-deficient mice. The Journal of Immunology, 2011. 187(1): p. 102–109.Dorothée, G., et al., In situ sensory adaptation of tumor-infiltrating T lymphocytes to peptide-MHC levels elicits strong antitumor reactivity. The Journal of Immunology 2005;174(11): p. 6888–6897.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
A. Hanyecz ◽  
K. Olasz ◽  
O. Tarjanyi ◽  
P. Nemeth ◽  
K. Mikecz ◽  
...  

Rheumatoid arthritis (RA) is a systemic autoimmune disease and its targeting of the joints indicates the presence of a candidate autoantigen(s) in synovial joints. Patients with RA show immune responses in their peripheral blood to proteoglycan (PG) aggrecan. One of the most relevant animal models of RA appears to be proteoglycan-induced arthritis (PGIA), and CD4+T cells seem to play a crucial role in the initiation of the disease. In this review, the role of various T cell epitopes of aggrecan in the induction of autoreactive T cell activation and arthritis is discussed. We pay special attention to two critically important arthritogenic epitopes, 5/4E8 and P135H, found in the G1 and G3 domains of PG aggrecan, respectively, in the induction of autoimmune arthritis. Finally, results obtained with the recently developed PG-specific TCR transgenic mice system showed that altered T cell apoptosis, the balance of activation, and apoptosis of autoreactive T cells are critical factors in the development of autoimmunity.


Sign in / Sign up

Export Citation Format

Share Document