scholarly journals HIV-specific CD8+ T-cells in tonsils express exhaustive TRM-like signatures

2021 ◽  
Author(s):  
Rabiah Fardoos ◽  
Sarah K. Nyquist ◽  
Osaretin E. Asowata ◽  
Samuel W. Kazer ◽  
Alveera Singh ◽  
...  

Lymphoid tissues are an important HIV reservoir site that persists in the face of antiretroviral therapy and natural immunity. Targeting these reservoirs by harnessing the antiviral activity of local tissue resident memory (TRM) CD8+ T-cells is of great interest, but limited data exist on TRMs within lymph nodes of people living with HIV (PLWH). Here, we studied tonsil CD8+ T-cells obtained from PLWH and uninfected controls from South Africa. We show that these cells are preferentially located outside the germinal centers (GCs), the main reservoir site for HIV, and display a low cytolytic and transcriptionally TRM-like profile that is distinct from blood. In PLWH, CD8+ TRM-like cells are highly expanded and adopt a more cytolytic, activated and exhausted phenotype characterized by increased expression of CD69, PD-1 and perforin, but reduced CD127. This phenotype was enhanced in HIV-specific CD8+ T-cells from tonsils compared to matched blood. Single-cell profiling of these cells revealed a clear transcriptional signature of T-cell activation, clonal expansion and exhaustion ex-vivo. In contrast, this signature was absent from HIV-specific CD8+ T-cells in tonsils isolated from a natural HIV controller, who expressed lower levels of cell surface PD-1 and CXCR5, and reduced transcriptional evidence of T-cell activation, exhaustion and cytolytic activity. Thus, we show that HIV-specific TRM-like CD8+ T-cells in tonsils from non-HIV controllers are enriched for activation and exhaustion profiles compared to those in blood, suggesting that lymphoid HIV specific CD8+ TRM cells are potentially ideal candidates for immunotherapy to modulate their ability to targeting the HIV reservoirs.

Blood ◽  
2021 ◽  
Author(s):  
Muzaffar H Qazilbash ◽  
Neeraj Y Saini ◽  
Cha Soung-chul ◽  
Zhe Wang ◽  
Edward Stadtmauer ◽  
...  

We hypothesized that combining adoptively transferred autologous T cells with a cancer vaccine strategy would enhance therapeutic efficacy by adding anti-myeloma idiotype-keyhole limpet hemocyanin (Id-KLH) vaccine to vaccine-specific co-stimulated T cells. In this randomized, phase II trial, eligible patients received either the control (KLH only) or Id-KLH vaccine, an auto-transplant, vaccine-specific co-stimulated T-cells expanded ex-vivo, and two booster doses of the assigned vaccine. In 36 patients (20 in KLH, 16 in Id-KLH) enrolled, no dose-limiting toxicity was seen in either arm. At last evaluation, 6 (30%) and 8 (50%) had achieved complete remission in KLH-only and Id-KLH, respectively (p=0.22) and no difference in 3-year progression-free survival was observed (59% and 56%, respectively; p=0.32). In a 594 Nanostring nCounter gene panel analyzed for immune reconstitution (IR), compared with KLH-only patients, there was a greater change in IR genes in T-cells in Id-KLH patients relative to baseline. Specifically, upregulation of genes associated with activation, induction of effector function, and generation of memory CD8+ T cells after Id-KLH, but not after KLH control vaccination, was observed. Similarly, responding patients across both arms were associated with upregulation of genes associated with T-cell activation. At baseline, all patients had greater expression of CD8+ T-cell exhaustion markers. These changes were associated with functional Id-specific immune responses in a subset of Id-KLH patients analyzed. In conclusion, in this combination immunotherapy approach, we observed a significantly more robust IR in CD4+ and CD8+ T cells in the Id-KLH arm, supporting further investigation of vaccine and adoptive immunotherapy strategies.


2010 ◽  
Vol 207 (8) ◽  
pp. 1791-1804 ◽  
Author(s):  
Elizabeth D. Thompson ◽  
Hilda L. Enriquez ◽  
Yang-Xin Fu ◽  
Victor H. Engelhard

Studies of T cell responses to tumors have focused on the draining lymph node (LN) as the site of activation. We examined the tumor mass as a potential site of activation after adoptive transfer of naive tumor-specific CD8 T cells. Activated CD8 T cells were present in tumors within 24 h of adoptive transfer and proliferation of these cells was also evident 4–5 d later in mice treated with FTY720 to prevent infiltration of cells activated in LNs. To confirm that activation of these T cells occurred in the tumor and not the tumor-draining LNs, we used mice lacking LNs. Activated and proliferating tumor-infiltrating lymphocytes were evident in these mice 24 h and 4 d after naive cell transfer. T cells activated within tumors acquired effector function that was evident both ex vivo and in vivo. Both cross-presenting antigen presenting cells within the tumor and tumor cells directly presenting antigen activated these functional CD8 effectors. We conclude that tumors support the infiltration, activation, and effector differentiation of naive CD8 T cells, despite the presence of immunosuppressive mechanisms. Thus, targeting of T cell activation to tumors may present a tool in the development of cancer immunotherapy.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A533-A533
Author(s):  
Faizah Alotaibi ◽  
Mark Vincent ◽  
Weiping Min ◽  
James Koropatnick

BackgroundCD5, a member of the scavenger receptor cysteine-rich superfamily, is a marker for T cells and a subset of B cells (B1a). CD5 associates with T-cell and B-cell receptors and impair TCR signaling1 2 and increased CD5 is an indication of B cell activation. Furthermore, CD5 levels on CD8+ T cell splenocytes were significantly increased after TCR/CD3 stimulation using ex vivo treatment with anti-CD3/anti-CD28 MAbs compared to non-stimulated CD8+ T splenocytes.3 Previous studies have shown a correlation between CD5 and anti-tumour immunity where CD5 knockout mice inoculated with B16F10 melanoma cells had delayed tumour growth compared to wild type mice.4 In tumour-infiltrating lymphocytes (TILs) isolated from lung cancer patients, CD5 levels were negatively correlated with anti-tumour activity and tumour-mediated activation-induced T cell death,5 suggesting that CD5 could impair activation of anti-tumour T cells. However, the correlation between CD5 level expression and T cell activation and exhaustion in the tumour microenvironment and in peripheral organs is ill-defined and requires further investigation.MethodsWe determined CD5 levels in T cell subsets in different organs in mice bearing syngeneic 4T1 breast tumour homografts and assessed the relationship between CD5 and increased CD69 and PD-1 (markers of T cell activation and exhaustion) by flow cytometry.ResultsWe report that T cell CD5 levels were higher in CD4+ T cells than in CD8+ T cells in 4T1 tumour-bearing mice, and that high CD5 levels on CD4+ T cells were maintained in peripheral organs (spleen and lymph nodes). However, both CD4+ and CD8+ T cells recruited to tumours had reduced CD5 compared to CD4+ and CD8+ T cells in peripheral organs. In addition, CD5highCD4+ T cells and CD5highCD8+ T cells from peripheral organs exhibited higher levels of activation and associated exhaustion compared to CD5lowCD4+ T cell and CD5lowCD8+ T cell from the same organs. Interestingly, CD8+ T cells among TILs and downregulated CD5 were activated to a higher level, with concomitantly increased exhaustion markers, than CD8+CD5+ TILs.ConclusionsThus, differential CD5 levels among T cells in tumours and lymphoid organs can be associated with different levels of T cell activation and exhaustion, suggesting that CD5 may be a therapeutic target for immunotherapeutic activation in cancer therapy.AcknowledgementsThe author thanks Rene Figueredo and Ronak Zareardalan for their assistance in animal workEthics ApprovalThis study was approved by the Animal Use Subcommittee of the University of Western OntarioReferencesAzzam HS, et al., Fine tuning of TCR signaling by CD5. The Journal of Immunology 2001. 166(9): p. 5464–5472.Voisinne GA, Gonzalez de Peredo and Roncagalli R. CD5, an undercover regulator of TCR signaling. Frontiers in Immunology 2018;9:p. 2900.Alotaibi, F., et al., CD5 blockade enhances ex vivo CD8+ T cell activation and tumour cell cytotoxicity. European journal of immunology 2020;50(5): p. 695–704.Tabbekh, M., et al., Rescue of tumor-infiltrating lymphocytes from activation-induced cell death enhances the antitumor CTL response in CD5-deficient mice. The Journal of Immunology, 2011. 187(1): p. 102–109.Dorothée, G., et al., In situ sensory adaptation of tumor-infiltrating T lymphocytes to peptide-MHC levels elicits strong antitumor reactivity. The Journal of Immunology 2005;174(11): p. 6888–6897.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1702-1702
Author(s):  
Sterling Eckard ◽  
Bianca Rojo ◽  
Victoria Smith ◽  
Patrick Chun

Abstract Background Myeloid-derived suppressor cells (MDSC) contribute to an immunosuppressive tumor environment and are a barrier to immune therapeutic approaches, including cell-based therapies such as chimeric antigen receptor T cells (CAR T). Despite good overall response rates with certain subsets of B cell leukemias and lymphomas, a significant percentage of patients treated with CAR T therapy do not respond or subsequently relapse. Poor CAR T expansion, poor persistence of infused cells, and clinical treatment failure are associated with tumor and systemic immune dysregulation including high blood levels of peripheral blood monocytic MDSC (M-MDSCs) and interleukin-6, both of which are associated with lack of durable responses 1. In addition, CAR T therapy has been limited by the occurrence of severe cytokine release syndrome (CRS), which is associated with high IL-6 production 2 by myeloid cells such as MDSC. AMV564 is a potent T cell engager that selectively depletes MDSC while promoting T cell activation and proliferation without significant IL-6 induction 3. In phase 1 studies in acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and solid tumors, AMV564 has been demonstrated to be clinically safe and active with some patients achieving complete remissions. Methods Cell lines, primary human cells, and patient samples were analyzed using flow cytometry with appropriate marker panels. T cell activation and cytotoxicity assays were conducted using primary human T cells from healthy donors and target cells (3:1 ratio) for 72 hours. T cell activation using ImmunoCult Human CD3/CD28 served as an assay reference. Results Analysis of patients treated with AMV564 demonstrated statistically significant selective depletion of M-MDSC by cycle 2 (Fig. 1A). While on AMV564 therapy, median IL-6 levels remained below 100 pg/mL despite robust T cell activation and expansion. Granzyme B production by CD8 T cells increased significantly between Cycle 1 and Cycle 2 in patients on therapy, and effector CD8 T cells expand over the course of treatment (Fig. 1B-C). These data collectively support the finding that AMV564 both removes a key source of immune suppression and is a potent agonist of T cell function and differentiation in patients. AMV564 potently activates and expands primary T cells ex vivo. Across donors, peak proliferation was significantly higher with AMV564 than with the CD3/CD28 reference (Fig. 2A). Importantly, T cell viability remained significantly higher with AMV564 when compared to reference control (CD3/CD28), and there was no evidence of activation-induced cell death (AICD) in AMV564-treated samples (Fig. 2B). Conclusions AMV564 depletes MDSC and stimulates expansion and longevity of T cells without significant IL-6 induction, suggesting a possible strategy for improvement in efficacy of cell-based therapy such as CAR T approaches. As circulating M-MDSC both at baseline and after CAR T infusion correlate with poor clinical efficacy 4, AMV564 may have beneficial effects during the conditioning phase of cell therapy, after re-infusion of CAR T products into patients, or both. Ex vivo studies using donor T cells and ongoing in vitro studies using CAR T molecules suggest that AMV564 may provide dual benefit with respect to both depletion of MDSC and T cell agonism. References 1. Jain, et al; Blood 2021; 137 (19): 2621-2633. doi: https://doi.org/10.1182/blood.2020007445 2. Li et al., Sci. Transl. Med. 11, eaax8861 (2019) 3. Eckard et al; Cancer Res 2021; (81) (13 Supplement) 528; DOI: 10.1158/1538-7445.AM2021-528 4. Jain, et al; Blood 2019; 134 (Supplement_1): 2885. doi: https://doi.org/10.1182/blood-2019-131041 Figure 1 Figure 1. Disclosures Eckard: Amphivena Therapeutics: Current Employment. Rojo: Amphivena Therapeutics: Current Employment. Smith: Amphivena Therapeutics: Current Employment. Chun: Amphivena Therapeutics: Current Employment.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3750-3750
Author(s):  
Adrianne E Vasey ◽  
Jeanette B Baker ◽  
Dennis B Leveson-Gower ◽  
Robert Negrin

Abstract Abstract 3750 Graft-vs-Host disease (GVHD) is the major complication of allogeneic hematopoietic cell transplantation (HCT). Murine models have been critically important to define the biological mechanisms and potential pathways of intervention of GVHD prevention and treatment. Although it is well recognized that GVHD occurs in response to minor histocompatibility antigens, little is know about the kinetics of donor T cell proliferation and homing in minor mismatch models. This is in contrast to models across major histocompatibility barriers where the early development of GVHD has been more thoroughly characterized. In prior studies across major barriers, we have defined an initiation phase within the first 3 days where conventional CD4+ and CD8+ T cells (Tcon) home to secondary lymphoid tissues, proliferate and up-regulate key homing markers allowing for entry into GVHD target tissues during the effector phase (Beilhack, et al. Blood 106:1113, 2005). Since minor models are more similar to clinical HCT, it is critical to understand the timecourse of GVHD development across minor histocompatibility barriers. Since the manifestations of GVHD in recipients of minor mismatch transplants are delayed, it is possible that disease development has altered kinetics. To investigate the temporal and spatial events of donor T cell activation and homing, side-by-side transplants were conducted using T cell depleted bone marrow (TCD BM) and Tcon from donor C57BL/6 (H2b) mice into either major mismatched Balb.c (H2d), or minor mismatch Balb.b (H2b) recipients. Balb.c mice received 1×106 Tcon while Balb.b mice were given 15×106 Tcon, based on previous titration experiments. Recipient mice were regularly scored for GVHD symptoms and monitored for at least 100 days for survival. Additionally, donor Tcon proliferation and migration were monitored longitudinally using in vivo and ex vivo bioluminescent imaging (BLI) by quantitating photons emitted by luciferase (luc+) expressing donor Tcon isolated from luc+ transgenic mice. Donor Tcon were also labeled with CFSE to determine proliferation kinetics at selected timepoints. The upregulation of T cell activation and tissue specific homing markers was examined using flow cytometric analysis of donor CD4+ and CD8+ T cells re-isolated from the secondary lymphoid tissues of transplanted mice. In both models, T cells initially home to secondary nodal sites by 3 days post-transplant, with an exodus into the tissues by day 6, albeit to a lesser extent in recipients of minor mismatch transplants. Additionally, similar levels of global donor CD4+ and CD8+ T cell proliferation between the models were observed using both BLI and CFSE staining as early as 3 days after transplant (BLI, p>0.05, n=9). More noticeable reductions in minor mismatch recipients were apparent by day 6 (BLI p<0.0001, n=9). The expression profiles of several T cell activation and tissue homing markers, such as CD44, CD69, a4b7, and P- and E-selectin, were also quite similar when measured at timepoints within one week of transplant, although there was some variability in expression between tissues as well as between CD4 and CD8 T cells. However re-isolated donor T cells from recipients of minor mismatched transplants did consistently show delays in the up-regulation of CD25 and the down-regulation of CD62L, as compared to that noted in major mismatch transplant recipients. Together, these data support the conclusion that the early events of donor T cell activation in the initiation phase of GVHD, particularly spatially, are quite similar to those previously documented in major mismatch models of GVHD, reinforcing the usefulness of both models as translational research tools. More importantly, the data suggest that the delay in visible GVHD onset noted in transplants across minor barriers arises from temporal differences in the effector phase of T cell migration and proliferation, rather than delays in the initiation phase. As such, these findings support the targeting of very early events in T cell activation as the most effective method of reducing GVHD in the clinical setting. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 93 (2) ◽  
Author(s):  
Yanhui Cai ◽  
Mohamed Abdel-Mohsen ◽  
Costin Tomescu ◽  
Fengtian Xue ◽  
Guoxin Wu ◽  
...  

ABSTRACT Clearance of HIV-infected germinal center (GC) CD4+ follicular helper T cells (Tfh) after combination antiretroviral therapy (ART) is essential to an HIV cure. Blocking B cell lymphoma 6 (BCL6; the master transcription factor for Tfh cells) represses HIV infection of tonsillar CD4+ Tfh ex vivo, reduces GC formation, and limits immune activation in vivo. We assessed the anti-HIV activity of a novel BCL6 inhibitor, FX1, in Tfh/non-Tfh CD4+ T cells and its impact on T cell activation and SAMHD1 phosphorylation (Thr592). FX1 repressed HIV-1 infection of peripheral CD4+ T cells and tonsillar Tfh/non-Tfh CD4+ T cells (P < 0.05) and total elongated and multispliced HIV-1 RNA production during the first round of viral life cycle (P < 0.01). Using purified circulating CD4+ T cells from uninfected donors, we demonstrate that FX1 treatment resulted in downregulation pSAMHD1 expression (P < 0.05) and T cell activation (HLA-DR, CD25, and Ki67; P < 0.01) ex vivo corresponding with inhibition of HIV-1 and HIV-2 replication. Ex vivo HIV-1 reactivation using purified peripheral CD4+ T cells from HIV-infected ART-suppressed donors was also blocked by FX1 treatment (P < 0.01). Our results indicate that BCL6 function contributes to Tfh/non-Tfh CD4+ T cell activation and cellular susceptibility to HIV infection. BCL6 inhibition represents a novel therapeutic strategy to potentiate HIV suppression in Tfh/non-Tfh CD4+ T cells without reactivation of latent virus. IMPORTANCE The expansion and accumulation of HIV-infected BCL6+ Tfh CD4+ T cells are thought to contribute to the persistence of viral reservoirs in infected subjects undergoing ART. Two mechanisms have been raised for the preferential retention of HIV within Tfh CD4+ T cells: (i) antiretroviral drugs have limited tissue distribution, resulting in insufficient tissue concentration and lower efficacy in controlling HIV replication in lymphoid tissues, and (ii) cytotoxic CD8+ T cells within lymphoid tissues express low levels of chemokine receptor (CXCR5), thus limiting their ability to enter the GCs to control/eliminate HIV-infected Tfh cells. Our results indicate that the BCL6 inhibitor FX1 can not only repress HIV infection of tonsillar Tfh ex vivo but also suppress HIV infection and reactivation in primary, non-Tfh CD4+ T cells. Our study provides a rationale for targeting BCL6 protein to extend ART-mediated reduction of persistent HIV and/or support strategies toward HIV remission beyond ART cessation.


2011 ◽  
Vol 208 (12) ◽  
pp. 2511-2524 ◽  
Author(s):  
Heather D. Hickman ◽  
Lily Li ◽  
Glennys V. Reynoso ◽  
Erica J. Rubin ◽  
Cara N. Skon ◽  
...  

Naive antiviral CD8+ T cells are activated in the draining LN (DLN) by dendritic cells (DCs) presenting viral antigens. However, many viruses infect LN macrophages, which participate in initiation of innate immunity and B cell activation. To better understand how and why T cells select infected DCs rather than macrophages, we performed intravital microscopy and ex vivo analyses after infecting mice with vaccinia virus (VV), a large DNA virus that infects both LN macrophages and DCs. Although CD8+ T cells interact with both infected macrophages and DCs in the LN peripheral interfollicular region (PIR), DCs generate more frequent and stable interactions with T cells. VV infection induces rapid release of CCR5-binding chemokines in the LN, and administration of chemokine-neutralizing antibodies diminishes T cell activation by increasing T cell localization to macrophages in the macrophage-rich region (MRR) at the expense of PIR DCs. Similarly, DC ablation increases both T cell localization to the MRR and the duration of T cell–macrophage contacts, resulting in suboptimal T cell activation. Thus, virus-induced chemokines in DLNs enable antiviral CD8+ T cells to distinguish DCs from macrophages to optimize T cell priming.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Xiaoning Zhao ◽  
Paul C Dimayuga ◽  
Juliana Yano ◽  
Jianchang Zhou ◽  
Wai Man Lio ◽  
...  

Background: Investigations in our laboratory identified endogenous, antigen-specific CD8+ T cells reactive to apoB-100 related peptide in apoE-/- mice using fluorescent synthetic soluble MHC-I/peptide complexes called Pentamers (Pent). We hypothesized that immunization of apoE-/- mice with the apoB-100 peptide p210, which we and others have reported to reduce atherosclerosis, will result in the activation of a specific CD8+ T cell population that can be detected by Pent analysis. Methods and Results: Binding of the p210 peptide to the mouse MHC-I allele H2Kb was determined in a prior study. A p210-Pent library was generated to screen splenocytes from p210 immunized apoE-/- mice. Mice were immunized with p210 conjugated to cBSA with Alum (p210) at 7, 10 and 12 weeks of age then euthanized at 13 weeks of age. PBS and cBSA/Alum (cBSA) treatment served as controls. The screening assay identified 2 potential Pents that could discriminate the immunized mice from the controls. The Pent with the largest difference, called Pent 5, was selected for further study. Pent 5(+)CD8+ T cells in p210 immunized mice were significantly increased compared to PBS and cBSA controls (1.3±0.9% vs. 0.6±0.4% and 0.7±0.4%, respectively; P<0.05). Immunization of apoE-/- mice expressing GFP on the FoxP3 promoter showed no difference in Pent 5(+)CD8+FoxP3+ T cells. High fat diet feeding for 6 weeks did not affect Pent 5(+)CD8+ T cells compared to normal chow fed mice confirming specificity of the Pent 5(+)CD8+ T cell response to immunization. Pent 5 binding significantly reduced cytolytic activity of p210-immune CD8+ T cells compared to control (1.2±2.2% vs. 17.0±13.8%, respectively), indicating antigen-specific blocking. Pent 5(+)CD8+ T cells cultured for 21 days showed significantly higher cytolytic activity compared to Pent 5(-)CD8+ T cells (16.5±7.0% vs. 2.8±3.6%, respectively). Immunization with the p210 peptide reduced aortic atherosclerosis measured by en face oil red-o stain area compared to PBS and cBSA control groups (4.0±1.7% vs. 6.4±2.3% and 5.7±2.2%, respectively; P<0.01), confirming our previous report. Conclusion: The use of Pentamers provide clear evidence that p210 immunization results in CD8+ T cell activation with functions specific to the p210 antigen.


Blood ◽  
2004 ◽  
Vol 104 (7) ◽  
pp. 1970-1978 ◽  
Author(s):  
Vladia Monsurrò ◽  
Ena Wang ◽  
Yoshisha Yamano ◽  
Stephen A. Migueles ◽  
Monica C. Panelli ◽  
...  

Abstract In a human melanoma model of tumor antigen (TA)–based immunization, we tested the functional status of TA-specific CD8+ cytotoxic T lymphocytes. A “quiescent” phenotype lacking direct ex vivo cytotoxic and proliferative potential was identified that was further characterized by comparing its transcriptional profile to that of TA-specific T cells sensitized in vitro by exposure to the same TA and the T-cell growth factor interleukin 2 (IL-2). Quiescent circulating tumor-specific CD8+ T cells were deficient in expression of genes associated with T-cell activation, proliferation, and effector function. This quiescent status may explain the observed lack of correlation between the presence of circulating immunization-induced lymphocytes and tumor regression. In addition, the activation of TA-specific T cells by in vitro antigen recall and IL-2 suggests that a complete effector phenotype might be reinstated in vivo to fulfill the potential of anticancer vaccine protocols.


2021 ◽  
Vol 6 (57) ◽  
pp. eabf7570
Author(s):  
Laura A. Vella ◽  
Josephine R. Giles ◽  
Amy E. Baxter ◽  
Derek A. Oldridge ◽  
Caroline Diorio ◽  
...  

Pediatric COVID-19 following SARS-CoV-2 infection is associated with fewer hospitalizations and often milder disease than in adults. A subset of children, however, present with Multisystem Inflammatory Syndrome in Children (MIS-C) that can lead to vascular complications and shock, but rarely death. The immune features of MIS-C compared to pediatric COVID-19 or adult disease remain poorly understood. We analyzed peripheral blood immune responses in hospitalized SARS-CoV-2 infected pediatric patients (pediatric COVID-19) and patients with MIS-C. MIS-C patients had patterns of T cell-biased lymphopenia and T cell activation similar to severely ill adults, and all patients with MIS-C had SARS-CoV-2 spike-specific antibodies at admission. A distinct feature of MIS-C patients was robust activation of vascular patrolling CX3CR1+ CD8+ T cells that correlated with the use of vasoactive medication. Finally, whereas pediatric COVID-19 patients with acute respiratory distress syndrome (ARDS) had sustained immune activation, MIS-C patients displayed clinical improvement over time, concomitant with decreasing immune activation. Thus, non-MIS-C versus MIS-C SARS-CoV-2 associated illnesses are characterized by divergent immune signatures that are temporally distinct from one another and implicate CD8+ T cells in the clinical presentation and trajectory of MIS-C.


Sign in / Sign up

Export Citation Format

Share Document